Problem

Source: 12-th Hungary-Israel Binational Mathematical Competition 2001

Tags: modular arithmetic, graph theory, algebra, linear equation, combinatorics unsolved, combinatorics



Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. (a) Let $p$ be a prime. Consider the graph whose vertices are the ordered pairs $(x, y)$ with $x, y \in\{0, 1, . . . , p-1\}$ and whose edges join vertices $(x, y)$ and $(x' , y')$ if and only if $xx'+yy'\equiv 1 \pmod{p}$ . Prove that this graph does not contain $C_{4}$ . (b) Prove that for infinitely many values $n$ there is a graph $G_{n}$ with $e(G_{n}) \geq \frac{n\sqrt{n}}{2}-n$ that does not contain $C_{4}$.