Find all pairs of positive integers $(a, b)$ such that $$11ab \le a^3 - b^3 \le 12ab.$$
2022 JBMO Shortlist
Let $x, y,$ and $z$ be positive real numbers such that $xy + yz + zx = 3$. Prove that $$\frac{x + 3}{y + z} + \frac{y + 3}{z + x} + \frac{z + 3}{x + y} + 3 \ge 27 \cdot \frac{(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}{(x + y + z)^3}.$$ Proposed by Petar Filipovski, Macedonia
Let $a, b,$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove the following inequality $$a \sqrt[3]{\frac{b}{a}} + b \sqrt[3]{\frac{c}{b}} + c \sqrt[3]{\frac{a}{c}} \le ab + bc + ca + \frac{2}{3}.$$ Proposed by Anastasija Trajanova, Macedonia
Suppose that $a, b,$ and $c$ are positive real numbers such that $$a + b + c \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$Find the largest possible value of the expression $$\frac{a + b - c}{a^3 + b^3 + abc} + \frac{b + c - a}{b^3 + c^3 + abc} + \frac{c + a - b}{c^3 + a^3 + abc}.$$
The numbers $2, 2, ..., 2$ are written on a blackboard (the number $2$ is repeated $n$ times). One step consists of choosing two numbers from the blackboard, denoting them as $a$ and $b$, and replacing them with $\sqrt{\frac{ab + 1}{2}}$. $(a)$ If $x$ is the number left on the blackboard after $n - 1$ applications of the above operation, prove that $x \ge \sqrt{\frac{n + 3}{n}}$. $(b)$ Prove that there are infinitely many numbers for which the equality holds and infinitely many for which the inequality is strict.
Let $a, b,$ and $c$ be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that $$\frac{a^2 + b^2}{2ab} + \frac{b^2 + c^2}{2bc} + \frac{c^2 + a^2}{2ca} + \frac{2(ab + bc + ca)}{3} \ge 5 + |(a - b)(b - c)(c - a)|.$$
Anna and Bob, with Anna starting first, alternately color the integers of the set $S = \{1, 2, ..., 2022 \}$ red or blue. At their turn each one can color any uncolored number of $S$ they wish with any color they wish. The game ends when all numbers of $S$ get colored. Let $N$ be the number of pairs $(a, b)$, where $a$ and $b$ are elements of $S$, such that $a$, $b$ have the same color, and $b - a = 3$. Anna wishes to maximize $N$. What is the maximum value of $N$ that she can achieve regardless of how Bob plays?
Let $n \ge 2$ be an integer. Alex writes the numbers $1, 2, ..., n$ in some order on a circle such that any two neighbours are coprime. Then, for any two numbers that are not comprime, Alex draws a line segment between them. For each such segment $s$ we denote by $d_s$ the difference of the numbers written in its extremities and by $p_s$ the number of all other drawn segments which intersect $s$ in its interior. Find the greatest $n$ for which Alex can write the numbers on the circle such that $p_s \le |d_s|$, for each drawn segment $s$.
There are $200$ boxes on the table. In the beginning, each of the boxes contains a positive integer (the integers are not necessarily distinct). Every minute, Alice makes one move. A move consists of the following. First, she picks a box $X$ which contains a number $c$ such that $c = a + b$ for some numbers $a$ and $b$ which are contained in some other boxes. Then she picks a positive integer $k > 1$. Finally, she removes $c$ from $X$ and replaces it with $kc$. If she cannot make any mobes, she stops. Prove that no matter how Alice makes her moves, she won't be able to make infinitely many moves.
We call an even positive integer $n$ nice if the set $\{1, 2, \dots, n\}$ can be partitioned into $\frac{n}{2}$ two-element subsets, such that the sum of the elements in each subset is a power of $3$. For example, $6$ is nice, because the set $\{1, 2, 3, 4, 5, 6\}$ can be partitioned into subsets $\{1, 2\}$, $\{3, 6\}$, $\{4, 5\}$. Find the number of nice positive integers which are smaller than $3^{2022}$.
Let $S$ be a finite set of points in the plane, such that for each $2$ points $A$ and $B$ in $S$, the segment $AB$ is a side of a regular polygon all of whose vertices are contained in $S$. Find all possible values for the number of elements of $S$. Proposed by Viktor Simjanoski, Macedonia
Let $n \ge 2$ be an integer. In each cell of a $4n \times 4n$ table we write the sum of the cell row index and the cell column index. Initially, no cell is colored. A move consists of choosing two cells which are not colored and coloring one of them in red and one of them in blue. Show that, however Alex perfors $n^2$ moves, Jane can afterwards perform a number of moves (eventually none) after which the sum of the numbers written in the red cells is the same as the sum of the numbers written in the blue ones.
Let $ABCDE$ be a cyclic pentagon such that $BC = DE$ and $AB$ is parallel to $DE$. Let $X, Y,$ and $Z$ be the midpoints of $BD, CE,$ and $AE$ respectively. Show that $AE$ is tangent to the circumcircle of the triangle $XYZ$. Proposed by Nikola Velov, Macedonia
Let $ABC$ be a triangle with circumcircle $k$. The points $A_1, B_1,$ and $C_1$ on $k$ are the midpoints of arcs $\widehat{BC}$ (not containing $A$), $\widehat{AC}$ (not containing $B$), and $\widehat{AB}$ (not containing $C$), respectively. The pairwise distinct points $A_2, B_2,$ and $C_2$ are chosen such that the quadrilaterals $AB_1A_2C_1, BA_1B_2C_1,$ and $CA_1C_2B_1$ are parallelograms. Prove that $k$ and the circumcircle of triangle $A_2B_2C_2$ have a common center. Comment. Point $A_2$ can also be defined as the reflection of $A$ with respect to the midpoint of $B_1C_1$, and analogous definitions can be used for $B_2$ and $C_2$.
Let $ABC$ be an acute triangle such that $AH = HD$, where $H$ is the orthocenter of $ABC$ and $D \in BC$ is the foot of the altitude from the vertex $A$. Let $\ell$ denote the line through $H$ which is tangent to the circumcircle of the triangle $BHC$. Let $S$ and $T$ be the intersection points of $\ell$ with $AB$ and $AC$, respectively. Denote the midpoints of $BH$ and $CH$ by $M$ and $N$, respectively. Prove that the lines $SM$ and $TN$ are parallel.
Given is an equilateral triangle $ABC$ and an arbitrary point, denoted by $E$, on the line segment $BC$. Let $l$ be the line through $A$ parallel to $BC$ and let $K$ be the point on $l$ such that $KE$ is perpendicular to $BC$. The circle with centre $K$ and radius $KE$ intersects the sides $AB$ and $AC$ at $M$ and $N$, respectively. The line perpendicular to $AB$ at $M$ intersects $l$ at $D$, and the line perpendicular to $AC$ at $N$ intersects $l$ at $F$. Show that the point of intersection of the angle bisectors of angles $MDA$ and $NFA$ belongs to the line $KE$.
Given is an acute angled triangle $ABC$ with orthocenter $H$ and circumcircle $k$. Let $\omega$ be the circle with diameter $AH$ and $P$ be the point of intersection of $\omega$ and $k$ other than $A$. Assume that $BP$ and $CP$ intersect $\omega$ for the second time at points $Q$ and $R$, respectively. If $D$ is the foot of the altitude from $A$ to $BC$ and $S$ is the point of the intersection of $\omega$ and $QD$, prove that $HR = HS$.
Let $ABC$ be a right triangle with hypotenuse $BC$. The tangent to the circumcircle of triangle $ABC$ at $A$ intersects the line $BC$ at $T$. The points $D$ and $E$ are chosen so that $AD = BD, AE = CE,$ and $\angle CBD = \angle BCE < 90^{\circ}$. Prove that $D, E,$ and $T$ are collinear. Proposed by Nikola Velov, Macedonia
Determine all pairs $(k, n)$ of positive integers that satisfy $$1! + 2! + ... + k! = 1 + 2 + ... + n.$$
Let $a < b < c < d < e$ be positive integers. Prove that $$\frac{1}{[a, b]} + \frac{1}{[b, c]} + \frac{1}{[c, d]} + \frac{2}{[d, e]} \le 1$$where $[x, y]$ is the least common multiple of $x$ and $y$ (e.g., $[6, 10] = 30$). When does equality hold?
Find all quadruples of positive integers $(p, q, a, b)$, where $p$ and $q$ are prime numbers and $a > 1$, such that $$p^a = 1 + 5q^b.$$
Consider the sequence $u_0, u_1, u_2, ...$ defined by $u_0 = 0, u_1 = 1,$ and $u_n = 6u_{n - 1} + 7u_{n - 2}$ for $n \ge 2$. Show that there are no non-negative integers $a, b, c, n$ such that $$ab(a + b)(a^2 + ab + b^2) = c^{2022} + 42 = u_n.$$
Find all pairs $(a, p)$ of positive integers, where $p$ is a prime, such that for any pair of positive integers $m$ and $n$ the remainder obtained when $a^{2^n}$ is divided by $p^n$ is non-zero and equals the remainder obtained when $a^{2^m}$ is divided by $p^m$.
Find all positive integers $n$ for which there exists an integer multiple of $2022$ such that the sum of the squares of its digits is equal to $n$.