Find all pairs of positive integers $(a, b)$ such that $$11ab \le a^3 - b^3 \le 12ab.$$
Problem
Source: 2022 JBMO Problem 1
Tags: positive integers, algebra, number theory, inequalities
30.06.2022 16:13
Clearly, $a>b$. If $a\ge b+4$, then $a^3-b^3-12ab=3ab(a-b-4)+(a-b)^3>0$, contradiction. If $a\leq b+2$, then $a^3-b^3-11ab=(a-b)^3-ab(11-3(a-b))\leq 8-5ab\leq -2<0$, contradiction. Hence, $a=b+3$. This gives us $$11b(b+3)\leq (b+3)^3-b^3\leq 12b(b+3)\Leftrightarrow 9\leq b(b+3)\leq \frac{27}2\Rightarrow b=2$$ So the only solution is $(a,b)=(5,2)$.
01.07.2022 00:33
because $a > b$, from the inequality $a^3 - b^3 > 3ab(a-b)$ and $a^3 - b^3 \leq 12ab$, we can deduce that $a-b \leq 3$. The rest as above
01.07.2022 19:17
@BarisKoyuncu exactly my solution in exam
01.07.2022 21:19
Weighted_Dirichlet wrote: @BarisKoyuncu exactly my solution in exam Congratulations
02.07.2022 04:36
$11ab \le a^3 - b^3 \le 12ab\implies 11ab \le (a-b)((a-b)^2 +3ab)\le 12ab.$ $=11p\le d(d^2 +3p)\le 12p,$ where $p=ab,$ and $d=(a-b).$ Can anybody help me from here?
02.07.2022 05:48
bitrak wrote: I will go step by step. Nice solution !!
02.07.2022 06:31
sarjinius wrote: Find all pairs of positive integers $(a, b)$ such that $$11ab \le a^3 - b^3 \le 12ab.$$ Who was the author?
02.07.2022 17:12
Hm? ......
03.07.2022 11:03
proposed by Croatia
05.07.2022 02:34
Author is Ivan Novak, Croatia
11.07.2022 03:07
12.07.2022 09:38
Vulch wrote: $11ab \le a^3 - b^3 \le 12ab\implies 11ab \le (a-b)((a-b)^2 +3ab)\le 12ab.$ $=11p\le d(d^2 +3p)\le 12p,$ where $p=ab,$ and $d=(a-b).$ Can anybody help me from here? Sure! You have $11p-3dp \leq d^3 \leq 12p-3dp$ but $d^3$ is positive, therefore $p(12-3d) > 0 \implies 12 > 3d \implies d \leq 3$ We take cases and the conclusion follows
26.08.2022 10:56
Clearly $a>b$, let $a=b+x$ with $x\in\mathbb{Z^+}$ $11ab\le a^{3}-b^{3} \le 12ab$ $\Rightarrow 11b^{2}+11bx \le x^{3}+3bx^{2}+3b^{2}x \le12b^{2}+12bx$ For $x\ge4$, $3bx^{2}\ge12bx$ and $3b^{2}x\ge12b^{2}$ $\Rightarrow 3bx^{2}+3b^{2}x\ge12b^{2}+12bx$ which results in contradiction, hence $x\le3$ For $x=1$, $8b^{2}+8b-1\le0$. No positive integer solution exist. For $x=2$, $5b^{2}+10b-8\le0$. Again, no positive integer solution exist. For $x=3$, $b^{2}+3b-11\le0$. Only $b=2$ satisfies. Therefore, the only solution is $(5,2)$.
09.02.2023 22:54
Note that clearly $a>b$ since $a^3>b^3$. Let $x=a-b$ and $y=ab$ so that they are both positive. Then, $$11y\leq x(x^2+3y)\leq 12y$$$$11\leq \frac{x^3}{y}+3x\leq 12.$$ Case 1: $x=1$. Then $$8\leq \frac{1}{y}\leq 9,$$but this is not satisfied by any positive integer $y$. Case 2: $x=2$. Then $$5\leq \frac{8}{y}\leq 6,$$but again this is not possible. Case 3: $x=3$. Then $$2\leq \frac{27}{y}\leq 3,$$and since $y$ is a positive integer, $9\leq y\leq 13.$ However, remember that $a=b+3$, so $y=ab=b(b+3)$ From $9\leq y\leq 13$, only 10 can be expressed as $b(b+3)$, so we must have $x=3,y=10$ so $$(a,b)=(5,2).$$ $x\geq4$ is clearly not possible since $x^3/y$ is positive, so the only solution is $(5,2).$
29.04.2023 11:54
$a^3 - b^3 = (a-b)(a^2 + ab + b^2) \leq 12ab$ Since $a^2 + b^2 \geq 2ab,$ hence $(a-b)(3ab) \leq a^3 - b^3 \leq 12ab \implies a-b \leq 4$. (further noticing that $a^2 + b^2 = 2ab$ iff $a=b$ which is impossible, hence $a^2 + b^2 > 2ab \implies a-b \leq 3)$ Case bash $a-b =1,2,3$ gives the only solution $(a,b)=(5,2)$. QED.
22.06.2023 00:19
Obviosly $a>b$. Let $a=b+x$ where $x \in \mathbb{N}$. We get $A=(3x-11)b^2+(3x^2-11x)b+x^3\geq0$ and $B=(3x-12)b^2+(3x^2-12x)b+x^3\leq0$. Now we will find the discriminant for $b$ in both equations. $\Delta_A=-x^2(3x^2+22x-121)$ which needs to be less than or equal to zero, because $A\geq0$. $\Delta_B=-3x^2(x+12)(x-4)$ which needs to be greater than or equal to zero, because $B\leq0$. Solving $\Delta_A\leq0$ and $\Delta_B\geq0$ in natural numbers we get $x=3$. Now we need to solve $-2b^2-6b+27\geq0$ and $-3b^2-3b+9\leq0$. The above has only one solution in natural numbers: $(a,b)=(5,2)$
14.11.2023 19:47
Version 1 Find all pairs of positive integers $(a,b)$ such that $$14ab\leq a^3-b^3\leq 15ab$$
14.11.2023 19:48
Let us realise that this version problem has an equality case which original problem don't.
14.11.2023 19:55
Generalization 1 Prove that for $\lambda \in \left(2,\dfrac{13+3\sqrt{21}}{2}\right)$ reals, the $(a,b)$ positive integer pairs which holds the inequality $$\lambda ab\leq a^3-b^3\leq \left(\lambda +1\right)ab$$are $$b\in \left(\dfrac{\left(\lambda -2\right)^3}{27\left(3b+\lambda -2\right)},\dfrac{\left(\lambda -2\right)^3}{18\left(3b+\lambda -2\right)}\right)$$for $b$ between below is $\left(a,b\right)=\left(\dfrac{3b+\lambda -2}{3},b\right)$.
24.05.2024 11:39
Good solution
02.12.2024 20:16
triangle112 wrote: Author is Ivan Novak, Croatia This is false information. Authors of this problem are in fact Borna Banjanin and Tin Salopek. They gave Ivan Novak the idea when he was their university assistant.
09.01.2025 07:27
We have $11ab \leq (a-b)(a^2+ab+b^2) \leq 12ab$, and $a > b$. By AMGM $(a-b)(a^2+ab+b^2) \geq 3(a-b)ab$ so it follows that $a-b \leq 4$ But equality occurs only when $a=b$ so $a-b=4$ is not possible. We now split into cases. For each case $a=b+1, b=2, b+3$ we obtain a quadratic in $b$ just looking at the left side of the inequality. If $a=b+1$, we have $b \in [ \frac14 (-2-\sqrt{6}), \frac14 (\sqrt{6}-2) ]$, no solutions. If $a=b+2$, we similarly get no solutions. If $a=b+3$, we get $b \in [\frac12(-3-3\sqrt{7}), \frac12 (3\sqrt{7}-3)]$ giving us $b=1, 2$. A finite check gives us only $\boxed{(5, 2)}$ as a solution.