2018 Brazil Team Selection Test

February 17th, 2018 - Test 1

1

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

2

Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations: Choose any number of the form $2^j$, where $j$ is a non-negative integer, and put it into an empty cell. Choose two (not necessarily adjacent) cells with the same number in them; denote that number by $2^j$. Replace the number in one of the cells with $2^{j+1}$ and erase the number in the other cell. At the end of the game, one cell contains $2^n$, where $n$ is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of $n$. Proposed by Warut Suksompong, Thailand

3

Let $q$ be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes the following three lines of real numbers on the blackboard: In the first line, Gugu writes down every number of the form $a-b$, where $a$ and $b$ are two (not necessarily distinct) numbers on his napkin. In the second line, Gugu writes down every number of the form $qab$, where $a$ and $b$ are two (not necessarily distinct) numbers from the first line. In the third line, Gugu writes down every number of the form $a^2+b^2-c^2-d^2$, where $a, b, c, d$ are four (not necessarily distinct) numbers from the first line. Determine all values of $q$ such that, regardless of the numbers on Gugu's napkin, every number in the second line is also a number in the third line.

4

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$are integers.

APMO 2018 - Test 2

1

Let $H$ be the orthocenter of the triangle $ABC$. Let $M$ and $N$ be the midpoints of the sides $AB$ and $AC$, respectively. Assume that $H$ lies inside the quadrilateral $BMNC$ and that the circumcircles of triangles $BMH$ and $CNH$ are tangent to each other. The line through $H$ parallel to $BC$ intersects the circumcircles of the triangles $BMH$ and $CNH$ in the points $K$ and $L$, respectively. Let $F$ be the intersection point of $MK$ and $NL$ and let $J$ be the incenter of triangle $MHN$. Prove that $F J = F A$.

2

Let $f(x)$ and $g(x)$ be given by $f(x) = \frac{1}{x} + \frac{1}{x-2} + \frac{1}{x-4} + \cdots + \frac{1}{x-2018}$ $g(x) = \frac{1}{x-1} + \frac{1}{x-3} + \frac{1}{x-5} + \cdots + \frac{1}{x-2017}$. Prove that $|f(x)-g(x)| >2$ for any non-integer real number $x$ satisfying $0 < x < 2018$.

3

A collection of $n$ squares on the plane is called tri-connected if the following criteria are satisfied: (i) All the squares are congruent. (ii) If two squares have a point $P$ in common, then $P$ is a vertex of each of the squares. (iii) Each square touches exactly three other squares. How many positive integers $n$ are there with $2018\leq n \leq 3018$, such that there exists a collection of $n$ squares that is tri-connected?

4

Let $ABC$ be an equilateral triangle. From the vertex $A$ we draw a ray towards the interior of the triangle such that the ray reaches one of the sides of the triangle. When the ray reaches a side, it then bounces off following the law of reflection, that is, if it arrives with a directed angle $\alpha$, it leaves with a directed angle $180^{\circ}-\alpha$. After $n$ bounces, the ray returns to $A$ without ever landing on any of the other two vertices. Find all possible values of $n$.

5

Find all polynomials $P(x)$ with integer coefficients such that for all real numbers $s$ and $t$, if $P(s)$ and $P(t)$ are both integers, then $P(st)$ is also an integer.

March 24th, 2018 - Test 3

1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$has no positive roots.

2

Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed: $$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$. The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this. Prove that Eduardo has a winning strategy. Proposed by Amine Natik, Morocco

3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

4

Given a set $S$ of positive real numbers, let $$\Sigma (S) = \Bigg\{ \sum_{x \in A} x : \emptyset \neq A \subset S \Bigg\}.$$be the set of all the sums of elements of non-empty subsets of $S$. Find the least constant $L> 0$ with the following property: for every integer greater than $1$ and every set $S$ of $n$ positive real numbers, it is possible partition $\Sigma(S)$ into $n$ subsets $\Sigma_1,\ldots, \Sigma_n$ so that the ratio between the largest and smallest element of each $\Sigma_i$ is at most $L$.

April 13th, 2018 - Test 4 Day 1

1

Let $n \ge 1$ be an integer. For each subset $S \subset \{1, 2, \ldots , 3n\}$, let $f(S)$ be the sum of the elements of $S$, with $f(\emptyset) = 0$. Determine, as a function of $n$, the sum $$\sum_{\mathclap{\substack{S \subset \{1,2,\ldots,3n\}\\ 3 \mid f(S)}}} f(S)$$where $S$ runs through all subsets of $\{1, 2,\ldots, 3n\}$ such that $f(S)$ is a multiple of $3$.

2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

3

A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

April 14th, 2018 - Test 4 Day 2

4

In a triangle $ABC$, points $H, L, K$ are chosen on the sides $AB, BC, AC$, respectively, so that $CH \perp AB$, $HL \parallel AC$ and $HK \parallel BC$. In the triangle $BHL$, let $P, Q$ be the feet of the heights from the vertices $B$ and $H$. In the triangle $AKH$, let $R, S$ be the feet of the heights from the vertices $A$ and $H$. Show that the four points $P, Q, R, S$ are collinear.

5

Prove: there are polynomials $S_1, S_2, \ldots$ in the variables $x_1, x_2, \ldots,y_1, y_2,\ldots$ with integer coefficients satisfying, for every integer $n \ge 1$, $$\sum_{d \mid n} d \cdot S_d ^{n/d}=\sum_{d \mid n} d \cdot (x_d ^{n/d}+y_d ^{n/d}) \quad (*)$$Here, the sums run through the positive divisors $d$ of $n$. For example, the first two polynomials are $S_1 = x_1 + y_1$ and $S_2 = x_2 + y_2 - x_1y_1$, which verify identity $(*)$ for $n = 2$: $S_1^2 + 2S_2 = (x_1^2 + y_1^2) + 2 \cdot(x_2 + y_2)$.

6

An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ Shiny if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have $$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$Find the largest constant $K = K(n)$ such that $$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.

August 3rd, 2018 - IberoAmerican Test - Test 5

1

The numbers $1- \sqrt{2}$, $\sqrt{2}$ and $1+\sqrt{2}$ are written on a blackboard. Every minute, if $x, y, z$ are the numbers written, then they are erased and the numbers, $x^2 + xy + y^2$, $y^2 + yz + z^2$ and $z^2 + zx + x^2$ are written. Determine whether it is possible for all written numbers to be rational numbers after a finite number of minutes.

2

Prove that there is an integer $n>10^{2018}$ such that the sum of all primes less than $n$ is relatively prime to $n$. (R. Salimov)

3

Let $n > 10$ be an odd integer. Determine the number of ways to place the numbers $1, 2, \ldots , n$ around a circle so that each number in the circle divides the sum its two neighbors. (Two configurations such that one can be obtained from the other per rotation are to be counted only once.)

4

Consider an isosceles triangle $ABC$ with $AB = AC$. Let $\omega(XYZ)$ be the circumcircle of the triangle $XY Z$. The tangents to $\omega(ABC)$ through $B$ and $C$ meet at the point $D$. The point $F$ is marked on the arc $AB$ of $\omega(ABC)$ that does not contain $C$. Let $K$ be the point of intersection of lines $AF$ and $BD$ and $L$ the point of intersection of the lines $AB$ and $CF$. Let $T$ and $S$ be the centers of the circles $\omega(BLC)$ and $\omega(BLK)$, respectively. Suppose that the circles $\omega(BTS)$ and $\omega(CFK)$ are tangent to each other at the point $P$. Prove that $P$ belongs to the line $AB$.