Problem

Source: 2018 Brazil 3rd TST #4

Tags: algebra, combinatorics, Subsets, inequalities, boundary conditions



Given a set $S$ of positive real numbers, let $$\Sigma (S) = \Bigg\{ \sum_{x \in A} x : \emptyset \neq A \subset S \Bigg\}.$$be the set of all the sums of elements of non-empty subsets of $S$. Find the least constant $L> 0$ with the following property: for every integer greater than $1$ and every set $S$ of $n$ positive real numbers, it is possible partition $\Sigma(S)$ into $n$ subsets $\Sigma_1,\ldots, \Sigma_n$ so that the ratio between the largest and smallest element of each $\Sigma_i$ is at most $L$.