2023 Taiwan TST Round 2

Quiz 1

A

Find all functions $f : \mathbb{R} \to \mathbb{R}$, such that $$f\left(xy+f(y)\right)f(x)=x^2f(y)+f(xy)$$for all $x,y \in \mathbb{R}$ Proposed by chengbilly

C

Integers $n$ and $k$ satisfy $n > 2023k^3$. Kingdom Kitty has $n$ cities, with at most one road between each pair of cities. It is known that the total number of roads in the kingdom is at least $2n^{3/2}$. Prove that we can choose $3k + 1$ cities such that the total number of roads with both ends being a chosen city is at least $4k$.

N

Let $f_n$ be a polynomial with real coefficients for all $n \in \mathbb{Z}$. Suppose that \[f_n(k) = f_{n+k}(k) \quad n, k \in \mathbb{Z}.\](a) Does $f_n = f_m$ necessarily hold for all $m,n \in \mathbb{Z}$? (b) If furthermore $f_n$ is a polynomial with integer coefficients for all $n \in\mathbb{Z}$, does $f_n = f_m$ necessarily hold for all $m, n \in\mathbb{Z}$? Proposed by usjl

Quiz 2

A

For each positive integer $k$ greater than $1$, find the largest real number $t$ such that the following hold: Given $n$ distinct points $a^{(1)}=(a^{(1)}_1,\ldots, a^{(1)}_k)$, $\ldots$, $a^{(n)}=(a^{(n)}_1,\ldots, a^{(n)}_k)$ in $\mathbb{R}^k$, we define the score of the tuple $a^{(i)}$ as \[\prod_{j=1}^{k}\#\{1\leq i'\leq n\textup{ such that }\pi_j(a^{(i')})=\pi_j(a^{(i)})\}\]where $\#S$ is the number of elements in set $S$, and $\pi_j$ is the projection $\mathbb{R}^k\to \mathbb{R}^{k-1}$ omitting the $j$-th coordinate. Then the $t$-th power mean of the scores of all $a^{(i)}$'s is at most $n$. Note: The $t$-th power mean of positive real numbers $x_1,\ldots,x_n$ is defined as \[\left(\frac{x_1^t+\cdots+x_n^t}{n}\right)^{1/t}\]when $t\neq 0$, and it is $\sqrt[n]{x_1\cdots x_n}$ when $t=0$. Proposed by Cheng-Ying Chang and usjl

G

Is there a scalene triangle $ABC$ similar to triangle $IHO$, where $I$, $H$, and $O$ are the incenter, orthocenter, and circumcenter, respectively, of triangle $ABC$? Proposed by Li4 and usjl.

N

Find all polynomials $P$ with real coefficients satisfying that there exist infinitely many pairs $(m, n)$ of coprime positives integer such that $P(\frac{m}{n})=\frac{1}{n}$. Proposed by usjl

Mock IMO, Day 1

3

Let $\Omega$ be the circumcircle of an acute triangle $ABC$. Points $D$, $E$, $F$ are the midpoints of the inferior arcs $BC$, $CA$, $AB$, respectively, on $\Omega$. Let $G$ be the antipode of $D$ in $\Omega$. Let $X$ be the intersection of lines $GE$ and $AB$, while $Y$ the intersection of lines $FG$ and $CA$. Let the circumcenters of triangles $BEX$ and $CFY$ be points $S$ and $T$, respectively. Prove that $D$, $S$, $T$ are collinear. Proposed by kyou46 and Li4.

6

There is an equilateral triangle $ABC$ on the plane. Three straight lines pass through $A$, $B$ and $C$, respectively, such that the intersections of these lines form an equilateral triangle inside $ABC$. On each turn, Ming chooses a two-line intersection inside $ABC$, and draws the straight line determined by the intersection and one of $A$, $B$ and $C$ of his choice. Find the maximum possible number of three-line intersections within $ABC$ after 300 turns. Proposed by usjl