Problem

Source: 2023 Taiwan TST Round 2 Independent Study 2-A

Tags: Inequality, analytic geometry, inequalities, Taiwan



For each positive integer $k$ greater than $1$, find the largest real number $t$ such that the following hold: Given $n$ distinct points $a^{(1)}=(a^{(1)}_1,\ldots, a^{(1)}_k)$, $\ldots$, $a^{(n)}=(a^{(n)}_1,\ldots, a^{(n)}_k)$ in $\mathbb{R}^k$, we define the score of the tuple $a^{(i)}$ as \[\prod_{j=1}^{k}\#\{1\leq i'\leq n\textup{ such that }\pi_j(a^{(i')})=\pi_j(a^{(i)})\}\]where $\#S$ is the number of elements in set $S$, and $\pi_j$ is the projection $\mathbb{R}^k\to \mathbb{R}^{k-1}$ omitting the $j$-th coordinate. Then the $t$-th power mean of the scores of all $a^{(i)}$'s is at most $n$. Note: The $t$-th power mean of positive real numbers $x_1,\ldots,x_n$ is defined as \[\left(\frac{x_1^t+\cdots+x_n^t}{n}\right)^{1/t}\]when $t\neq 0$, and it is $\sqrt[n]{x_1\cdots x_n}$ when $t=0$. Proposed by Cheng-Ying Chang and usjl