Given an integer $n \geqslant 2$. Suppose there is a point $P$ inside a convex cyclic $2n$-gon $A_1 \ldots A_{2n}$ satisfying $$\angle PA_1A_2 = \angle PA_2A_3 = \ldots = \angle PA_{2n}A_1,$$prove that $$ \prod_{i=1}^{n} \left|A_{2i - 1}A_{2i} \right| = \prod_{i=1}^{n} \left|A_{2i}A_{2i+1} \right|,$$where $A_{2n + 1} = A_1$.
2023 China Team Selection Test
Day 1 (March 11, 2023, Chengdu) - TST 1
$n$ people attend a party. There are no more than $n$ pairs of friends among them. Two people shake hands if and only if they have at least $1$ common friend. Given integer $m\ge 3$ such that $n\leq m^3$. Prove that there exists a person $A$, the number of people that shake hands with $A$ is no more than $m-1$ times of the number of $A$‘S friends.
(1) Let $a,b$ be coprime positive integers. Prove that there exists constants $\lambda$ and $\beta$ such that for all integers $m$, $$\left| \sum\limits_{k=1}^{m-1} \left\{ \frac{ak}{m} \right\}\left\{ \frac{bk}{m} \right\} - \lambda m \right| \le \beta$$ (2) Prove that there exists $N$ such that for all $p>N$ (where $p$ is a prime number), and any positive integers $a,b,c$ positive integers satisfying $p\nmid (a+b)(b+c)(c+a)$, there are at least $\lfloor \frac{p}{12} \rfloor$ solutions $k\in \{1,\cdots,p-1\}$ such that $$ \left\{\frac{ak}{p}\right\} + \left\{\frac{bk}{p}\right\} + \left\{\frac{ck}{p}\right\} \le 1 $$
Day 2 (March 12, 2023, Chengdu) - TST 1
Given $m,n\in\mathbb N_+,$ define $$S(m,n)=\left\{(a,b)\in\mathbb N_+^2\mid 1\leq a\leq m,1\leq b\leq n,\gcd (a,b)=1\right\}.$$Prove that: for $\forall d,r\in\mathbb N_+,$ there exists $m,n\in\mathbb N_+,m,n\geq d$ and $\left|S(m,n)\right|\equiv r\pmod d.$
Let $\triangle ABC$ be a triangle, and let $P_1,\cdots,P_n$ be points inside where no three given points are collinear. Prove that we can partition $\triangle ABC$ into $2n+1$ triangles such that their vertices are among $A,B,C,P_1,\cdots,P_n$, and at least $n+\sqrt{n}+1$ of them contain at least one of $A,B,C$.
Prove that: (1) In the complex plane, each line (except for the real axis) that crosses the origin has at most one point ${z}$, satisfy $$\frac {1+z^{23}}{z^{64}}\in\mathbb R.$$(2) For any non-zero complex number ${a}$ and any real number $\theta$, the equation $1+z^{23}+az^{64}=0$ has roots in $$S_{\theta}=\left\{ z\in\mathbb C\mid\operatorname{Re}(ze^{-i\theta })\geqslant |z|\cos\frac{\pi}{20}\right\}.$$Proposed by Yijun Yao
Day 3 (March 16, 2023, Chengdu) - TST 1
Given the integer $n\geq 2$ and a integer ${a}$, which is coprime with ${n}$. A country has ${n}$ islands $D_1$, $D_2$, $\cdots$, $D_n$. For any $1\leq i\neq j\leq n$, there is a one-way ferry $D_i$ to $D_j$ if and only if $ij\equiv ia\pmod n$. A tourist can initially fly to any of the islands, and then he can only take a one-way ferry. What is the maximum number of islands he can visit? Created by Zhenhua Qu
In non-isosceles acute ${}{\triangle ABC}$, $AP$, $BQ$, $CR$ is the height of the triangle. $A_1$ is the midpoint of $BC$, $AA_1$ intersects $QR$ at $K$, $QR$ intersects a straight line that crosses ${A}$ and is parallel to $BC$ at point ${D}$, the line connecting the midpoint of $AH$ and ${K}$ intersects $DA_1$ at $A_2$. Similarly define $B_2$, $C_2$. ${}\triangle A_2B_2C_2$ is known to be non-degenerate, and its circumscribed circle is $\omega$. Prove that: there are circles $\odot A'$, $\odot B'$, $\odot C'$ tangent to and INSIDE $\omega$ satisfying: (1) $\odot A'$ is tangent to $AB$ and $AC$, $\odot B'$ is tangent to $BC$ and $BA$, and $\odot C'$ is tangent to $CA$ and $CB$. (2) $A'$, $B'$, $C$' are different and collinear. Created by Sihui Zhang
Find the largest positive integer $m$ which makes it possible to color several cells of a $70\times 70$ table red such that There are no two red cells satisfying: the two rows in which they are have the same number of red cells, while the two columns in which they are also have the same number of red cells; There are two rows with exactly $m$ red cells each.
Day 4 (March 17, 2023, Chengdu) - TST 1
The set of nonempty integers $A$ is said to be "elegant" if it is for any $a\in A,$ $1\leq k\leq 2023,$ $$\left| \left\{ b\in A:\left\lfloor\frac b{3^k}\right\rfloor =\left\lfloor\frac a{3^k}\right\rfloor\right\}\right| =2^k.$$Prove that if the intersection of the integer set $S$ and any "elegant" set is not empty$,$ then $S$ contains an "elegant" set.
Let $n\in\mathbb N_+.$ For $1\leq i,j,k\leq n,a_{ijk}\in\{ -1,1\} .$ Prove that: $\exists x_1,x_2,\cdots ,x_n,y_1,y_2,\cdots ,y_n,z_1,z_2,\cdots ,z_n\in \{-1,1\} ,$ satisfy $$\left| \sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^na_{ijk}x_iy_jz_k\right| >\frac {n^2}3.$$Created by Yu Deng
Prove that there exists some positive real number $\lambda$ such that for any $D_{>1}\in\mathbb{R}$, one can always find an acute triangle $\triangle ABC$ in the Cartesian plane such that $A, B, C$ lie on lattice points; $AB, BC, CA>D$; $S_{\triangle ABC}<\frac{\sqrt 3}{4}D^2+\lambda\cdot D^{4/5}$.
Day 1 (March 25, 2023, Hangzhou) - TST 2
Does there exists a positive irrational number ${x},$ such that there are at most finite positive integers ${n},$ satisfy that for any integer $1\leq k\leq n,$ $\{kx\}\geq\frac 1{n+1}?$
For any nonempty, finite set $B$ and real $x$, define $$d_B(x) = \min_{b\in B} |x-b|$$ (1) Given positive integer $m$. Find the smallest real number $\lambda$ (possibly depending on $m$) such that for any positive integer $n$ and any reals $x_1,\cdots,x_n \in [0,1]$, there exists an $m$-element set $B$ of real numbers satisfying $$d_B(x_1)+\cdots+d_B(x_n) \le \lambda n$$ (2) Given positive integer $m$ and positive real $\epsilon$. Prove that there exists a positive integer $n$ and nonnegative reals $x_1,\cdots,x_n$, satisfying for any $m$-element set $B$ of real numbers, we have $$d_B(x_1)+\cdots+d_B(x_n) > (1-\epsilon)(x_1+\cdots+x_n)$$
For a convex quadrilateral $ABCD$, call a point in the interior of $ABCD$ balanced, if (1) $P$ is not on $AC,BD$ (2) Let $AP,BP,CP,DP$ intersect the boundaries of $ABCD$ at $A', B', C', D'$, respectively, then $$AP \cdot PA' = BP \cdot PB' = CP \cdot PC' = DP \cdot PD'$$ Find the maximum possible number of balanced points.
Day 2 (March 26, 2023, Hangzhou) - TST 2
Let $\Gamma, \Gamma_1, \Gamma_2$ be mutually tangent circles. The three circles are also tangent to a line $l$. Let $\Gamma, \Gamma_1$ be tangent to each other at $B_1$, $\Gamma, \Gamma_2$ be tangent to each other at $B_2$, $\Gamma_1, \Gamma_2$ be tangent to each other at $C$. $\Gamma, \Gamma_1, \Gamma_2$ are tangent to $l$ at $A, A_1, A_2$ respectively, where $A$ is between $A_1,A_2$. Let $D_1 = A_1C \cap A_2B_2, D_2 = A_2C \cap A_1B_1$. Prove that $D_1D_2$ is parallel to $l$.
Whether there are integers $a_1$, $a_2$, $\cdots$, that are different from each other, satisfying: (1) For $\forall k\in\mathbb N_+$, $a_{k^2}>0$ and $a_{k^2+k}<0$; (2) For $\forall n\in\mathbb N_+$, $\left| a_{n+1}-a_n\right|\leqslant 2023\sqrt n$?
Find the greatest constant $\lambda$ such that for any doubly stochastic matrix of order 100, we can pick $150$ entries such that if the other $9850$ entries were replaced by $0$, the sum of entries in each row and each column is at least $\lambda$. Note: A doubly stochastic matrix of order $n$ is a $n\times n$ matrix, all entries are nonnegative reals, and the sum of entries in each row and column is equal to 1.
Day 3 (March 29, 2023, Hangzhou) - TST 2
Let $A,B$ be two fixed points on the unit circle $\omega$, satisfying $\sqrt{2} < AB < 2$. Let $P$ be a point that can move on the unit circle, and it can move to anywhere on the unit circle satisfying $\triangle ABP$ is acute and $AP>AB>BP$. Let $H$ be the orthocenter of $\triangle ABP$ and $S$ be a point on the minor arc $AP$ satisfying $SH=AH$. Let $T$ be a point on the minor arc $AB$ satisfying $TB || AP$. Let $ST\cap BP = Q$. Show that (recall $P$ varies) the circle with diameter $HQ$ passes through a fixed point.
Let $a,b,d$ be integers such that $\left|a\right| \geqslant 2$, $d \geqslant 0$ and $b \geqslant \left( \left|a\right| + 1\right)^{d + 1}$. For a real coefficient polynomial $f$ of degree $d$ and integer $n$, let $r_n$ denote the residue of $\left[ f(n) \cdot a^n \right]$ mod $b$. If $\left \{ r_n \right \}$ is eventually periodic, prove that all the coefficients of $f$ are rational.
Given integer $n\geq 2$. Find the minimum value of $\lambda {}$, satisfy that for any real numbers $a_1$, $a_2$, $\cdots$, ${a_n}$ and ${b}$, $$\lambda\sum\limits_{i=1}^n\sqrt{|a_i-b|}+\sqrt{n\left|\sum\limits_{i=1}^na_i\right|}\geqslant\sum\limits_{i=1}^n\sqrt{|a_i|}.$$
Dat 4 (March 30, 2023, Hangzhou) - TST 2
Find all functions $f:\mathbb {Z}\to\mathbb Z$, satisfy that for any integer ${a}$, ${b}$, ${c}$, $$2f(a^2+b^2+c^2)-2f(ab+bc+ca)=f(a-b)^2+f(b-c)^2+f(c-a)^2$$
Given a prime $p$ and a real number $\lambda \in (0,1)$. Let $s$ and $t$ be positive integers such that $s \leqslant t < \frac{\lambda p}{12}$. $S$ and $T$ are sets of $s$ and $t$ consecutive positive integers respectively, which satisfy $$\left| \left\{ (x,y) \in S \times T : kx \equiv y \pmod p \right\}\right| \geqslant 1 + \lambda s.$$Prove that there exists integers $a$ and $b$ that $1 \leqslant a \leqslant \frac{1}{ \lambda}$, $\left| b \right| \leqslant \frac{t}{\lambda s}$ and $ka \equiv b \pmod p$.
Let $n$ be a positive integer. Initially, a $2n \times 2n$ grid has $k$ black cells and the rest white cells. The following two operations are allowed : (1) If a $2\times 2$ square has exactly three black cells, the fourth is changed to a black cell; (2) If there are exactly two black cells in a $2 \times 2$ square, the black cells are changed to white and white to black. Find the smallest positive integer $k$ such that for any configuration of the $2n \times 2n$ grid with $k$ black cells, all cells can be black after a finite number of operations.