For any nonempty, finite set $B$ and real $x$, define $$d_B(x) = \min_{b\in B} |x-b|$$ (1) Given positive integer $m$. Find the smallest real number $\lambda$ (possibly depending on $m$) such that for any positive integer $n$ and any reals $x_1,\cdots,x_n \in [0,1]$, there exists an $m$-element set $B$ of real numbers satisfying $$d_B(x_1)+\cdots+d_B(x_n) \le \lambda n$$ (2) Given positive integer $m$ and positive real $\epsilon$. Prove that there exists a positive integer $n$ and nonnegative reals $x_1,\cdots,x_n$, satisfying for any $m$-element set $B$ of real numbers, we have $$d_B(x_1)+\cdots+d_B(x_n) > (1-\epsilon)(x_1+\cdots+x_n)$$
Problem
Source: China TST 2023 Problem 14
Tags: inequalities, Sets
31.03.2023 23:49
sketch for a solution for (2): Let N be very big. Let $1<a_{1}<a_{2}<...<a_{N}<2$. Now let $t$ be very big. Now take the $x_{i}$'s to be all whole numbers inside the intervalls $[t^{a_{j}}, t^{a_{j}} + t^{2-a_{j}}]$. To prove that this works, we use that these intervalls have almost the same sums, and that these intervalls are very far away from one another.
01.04.2023 09:23
02.04.2023 18:43
Thanks for Baby cabbage helping me to solve this problem! For(1),it's similar to above solving by Canbankan. For(2),we let $ k>2^{2\times\left\lceil\log_{1/2}{\varepsilon}\right\rceil+5m}$ For$S_k=\left \{ 0,1,2,…,k \right \} $ We set$n=2^{k+1}-1$and$ x_i=2^{-1-\left \lfloor \log_{2}{i} \right \rfloor }$ We suppose that$B=\left \{ b_1<b_2<…<b_m \right \} $ $T_i=\left [\log_{1/2}{b_i}, \log_{1/2}{b_{i-1} }\right ) $ and$b_0=2^{-k-1} $,$b_{m+1}=1$ Let$I=\left \{ 1\le i\le m+1\mid\left | T_i \right | \ge 2^{\left \lceil \log_{1/2}{\varepsilon } \right \rceil+3m }\right \} $ For$\forall i\in I$ $a=\sup T_i$ $b=\inf T_i$ We have$\left ( 2^{-a},2^{-b}\right ) \cap B=\emptyset $ And\begin{align*} \sum_{j=b}^{a} 2^{j}d_{B}(2^{-j}) &\geq \sum_{j=b+1}^{a} 2^{j}\times \left ( 2^{-j}-2^{-a} \right ) \\ &> a-b-1-2=\left | T_i \right |-3 \\ &>\left ( 1-3\times 2^{-2\times\left\lceil\log_{1/2}{\varepsilon}\right\rceil-3m}\right ) \times \left | T_i \right | \\ &>\left ( 1-\varepsilon \times 2^{2-3m} \right ) \times \left | T_i \right | \\ &> \left ( 1-\varepsilon /2 \right )\times \left | T_i \right | \\ \end{align*}Also \begin{align*} &\sum_{i\in I}\left | T_i \right | \\ &\ge n-m\times 2^{\left\lceil\log_{1/2}{\varepsilon}\right\rceil+3m} \\ &> \left ( 1-m\times 2^{\left\lceil\log_{1/2}{\varepsilon}\right\rceil+3m-k} \right )\times n \\ &=\left ( 1-m\times 2^{-\left\lceil\log_{1/2}{\varepsilon}\right\rceil-2m} \right )\times n \\ &> \left ( 1-\varepsilon \times 2^{-m} \right )\times n \\ &\ge \left ( 1-\varepsilon /2 \right )\times n \end{align*}Therefore\begin{align*} \sum_{k=1}^{n} d_B\left ( x_k \right ) &\ge \sum _{i\in I}\sum _{j\in T_i}2^{j}\times \left ( 2^{-j}-2^{-a} \right ) \\ &> \sum _{i\in I}\left ( 1-\varepsilon /2 \right ) \times \left | T_i \right | \\ &>\left (1-\varepsilon /2 \right )^{2}\times n \\ &>\left ( 1-\varepsilon \right ) \times n \end{align*}Then we are done! $\blacksquare$