Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$. Proposed by Dominik Burek and Tomasz Ciesla, Poland
2021 IMO Shortlist
Algebra
Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\]true?
For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\]over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$ Proposed by Shahjalal Shohag, Bangladesh
Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$
Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$
Let $m\ge 2$ be an integer, $A$ a finite set of integers (not necessarily positive) and $B_1,B_2,...,B_m$ subsets of $A$. Suppose that, for every $k=1,2,...,m$, the sum of the elements of $B_k$ is $m^k$. Prove that $A$ contains at least $\dfrac{m}{2}$ elements.
Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\]Pakawut Jiradilok and Wijit Yangjit, Thailand
Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $$(f(a)-f(b))(f(b)-f(c))(f(c)-f(a)) = f(ab^2+bc^2+ca^2) - f(a^2b+b^2c+c^2a)$$for all real numbers $a$, $b$, $c$. Proposed by Ankan Bhattacharya, USA
Combinatorics
Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$.
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible. Carl Schildkraut, USA
Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the $k$-th move, Jumpy swaps the positions of the two walnuts adjacent to walnut $k$. Prove that there exists a value of $k$ such that, on the $k$-th move, Jumpy swaps some walnuts $a$ and $b$ such that $a<k<b$.
The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a path from $X$ to $Y$ is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called diverse if no road belongs to two or more paths in the collection. Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$. Proposed by Warut Suksompong, Thailand
Let $n$ and $k$ be two integers with $n>k\geqslant 1$. There are $2n+1$ students standing in a circle. Each student $S$ has $2k$ neighbors - namely, the $k$ students closest to $S$ on the left, and the $k$ students closest to $S$ on the right. Suppose that $n+1$ of the students are girls, and the other $n$ are boys. Prove that there is a girl with at least $k$ girls among her neighbors. Proposed by Gurgen Asatryan, Armenia
A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either: the rabbit cannot move; or the hunter can determine the cell in which the rabbit started. Decide whether there exists a winning strategy for the hunter. Proposed by Aron Thomas
Consider a checkered $3m\times 3m$ square, where $m$ is an integer greater than $1.$ A frog sits on the lower left corner cell $S$ and wants to get to the upper right corner cell $F.$ The frog can hop from any cell to either the next cell to the right or the next cell upwards. Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set $X$ of cells is called blocking if the frog cannot reach $F$ from $S$ when all the cells of $X$ are sticky. A blocking set is minimal if it does not contain a smaller blocking set. Prove that there exists a minimal blocking set containing at least $3m^2-3m$ cells. Prove that every minimal blocking set containing at most $3m^2$ cells.
Determine the largest integer $N$ for which there exists a table $T$ of integers with $N$ rows and $100$ columns that has the following properties: $\text{(i)}$ Every row contains the numbers $1$, $2$, $\ldots$, $100$ in some order. $\text{(ii)}$ For any two distinct rows $r$ and $s$, there is a column $c$ such that $|T(r,c) - T(s, c)|\geq 2$. (Here $T(r,c)$ is the entry in row $r$ and column $c$.)
Geometry
Let $ABCD$ be a parallelogram with $AC=BC.$ A point $P$ is chosen on the extension of ray $AB$ past $B.$ The circumcircle of $ACD$ meets the segment $PD$ again at $Q.$ The circumcircle of triangle $APQ$ meets the segment $PC$ at $R.$ Prove that lines $CD,AQ,BR$ are concurrent.
Let $\Gamma$ be a circle with centre $I$, and $A B C D$ a convex quadrilateral such that each of the segments $A B, B C, C D$ and $D A$ is tangent to $\Gamma$. Let $\Omega$ be the circumcircle of the triangle $A I C$. The extension of $B A$ beyond $A$ meets $\Omega$ at $X$, and the extension of $B C$ beyond $C$ meets $\Omega$ at $Z$. The extensions of $A D$ and $C D$ beyond $D$ meet $\Omega$ at $Y$ and $T$, respectively. Prove that \[A D+D T+T X+X A=C D+D Y+Y Z+Z C.\] Proposed by Dominik Burek, Poland and Tomasz Ciesla, Poland
Consider a $100\times 100$ square unit lattice $\textbf{L}$ (hence $\textbf{L}$ has $10000$ points). Suppose $\mathcal{F}$ is a set of polygons such that all vertices of polygons in $\mathcal{F}$ lie in $\textbf{L}$ and every point in $\textbf{L}$ is the vertex of exactly one polygon in $\mathcal{F}.$ Find the maximum possible sum of the areas of the polygons in $\mathcal{F}.$ Michael Ren and Ankan Bhattacharya, USA
Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.
Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.
Find all integers $n\geq 3$ for which every convex equilateral $n$-gon of side length $1$ contains an equilateral triangle of side length $1$. (Here, polygons contain their boundaries.)
Let $D$ be an interior point of the acute triangle $ABC$ with $AB > AC$ so that $\angle DAB = \angle CAD.$ The point $E$ on the segment $AC$ satisfies $\angle ADE =\angle BCD,$ the point $F$ on the segment $AB$ satisfies $\angle FDA =\angle DBC,$ and the point $X$ on the line $AC$ satisfies $CX = BX.$ Let $O_1$ and $O_2$ be the circumcenters of the triangles $ADC$ and $EXD,$ respectively. Prove that the lines $BC, EF,$ and $O_1O_2$ are concurrent.
Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.
Number Theory
Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$
Let $n \geqslant 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.
Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.
Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.
Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers. Proposed by Dorlir Ahmeti, Albania
Determine all integers $n\geqslant 2$ with the following property: every $n$ pairwise distinct integers whose sum is not divisible by $n$ can be arranged in some order $a_1,a_2,\ldots, a_n$ so that $n$ divides $1\cdot a_1+2\cdot a_2+\cdots+n\cdot a_n.$ Arsenii Nikolaiev, Anton Trygub, Oleksii Masalitin, and Fedir Yudin
Let $a_1,a_2,a_3,\ldots$ be an infinite sequence of positive integers such that $a_{n+2m}$ divides $a_{n}+a_{n+m}$ for all positive integers $n$ and $m.$ Prove that this sequence is eventually periodic, i.e. there exist positive integers $N$ and $d$ such that $a_n=a_{n+d}$ for all $n>N.$
Find all positive integers $n$ for which there exists a polynomial $P(x) \in \mathbb{Z}[x]$ such that for every positive integer $m\geq 1$, the numbers $P^m(1), \ldots, P^m(n)$ leave exactly $\lceil n/2^m\rceil$ distinct remainders when divided by $n$. (Here, $P^m$ means $P$ applied $m$ times.) Proposed by Carl Schildkraut, USA