2014 Taiwan TST Round 1

Quiz 1

1

Prove that for positive reals $a$, $b$, $c$ we have \[ 3(a+b+c) \ge 8\sqrt[3]{abc} + \sqrt[3]{\frac{a^3+b^3+c^3}{3}}. \]

2

Determine whether there exist ten sets $A_1$, $A_2$, $\dots$, $A_{10}$ such that (i) each set is of the form $\{a,b,c\}$, where $a \in \{1,2,3\}$, $b \in \{4,5,6\}$, $c \in \{7,8,9\}$, (ii) no two sets are the same, (iii) if the ten sets are arranged in a circle $(A_1, A_2, \dots, A_{10})$, then any two adjacent sets have no common element, but any two non-adjacent sets intersect. (Note: $A_{10}$ is adjacent to $A_1$.)

Quiz 2

1

Find all increasing functions $f$ from the nonnegative integers to the integers satisfying $f(2)=7$ and \[ f(mn) = f(m) + f(n) + f(m)f(n) \] for all nonnegative integers $m$ and $n$.

2

A triangle has side lengths $a$, $b$, $c$, and the altitudes have lengths $h_a$, $h_b$, $h_c$. Prove that \[ \left( \frac{a}{h_a} \right)^2 + \left( \frac{b}{h_b} \right)^2 + \left( \frac{c}{h_c} \right)^2 \ge 4. \]

Quiz 3

1

Let $O_1$, $O_2$ be two circles with radii $R_1$ and $R_2$, and suppose the circles meet at $A$ and $D$. Draw a line $L$ through $D$ intersecting $O_1$, $O_2$ at $B$ and $C$. Now allow the distance between the centers as well as the choice of $L$ to vary. Find the length of $AD$ when the area of $ABC$ is maximized.

2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

Mock IMO, Day 1

1

Let $f(x) = x^n + a_{n-2} x^{n-2} + a_{n-3}x^{n-3} + \dots + a_1x + a_0$ be a polynomial with real coefficients $(n \ge 2)$. Suppose all roots of $f$ are real. Prove that the absolute value of each root is at most $\sqrt{\frac{2(1-n)}n a_{n-2}}$.

2

For a fixed integer $k$, determine all polynomials $f(x)$ with integer coefficients such that $f(n)$ divides $(n!)^k$ for every positive integer $n$.

3

Let $ABC$ be a triangle with incenter $I$, and suppose the incircle is tangent to $CA$ and $AB$ at $E$ and $F$. Denote by $G$ and $H$ the reflections of $E$ and $F$ over $I$. Let $Q$ be the intersection of $BC$ with $GH$, and let $M$ be the midpoint of $BC$. Prove that $IQ$ and $IM$ are perpendicular.

Mock IMO, Day 2

4

Let $ABC$ be an acute triangle and let $D$ be the foot of the $A$-bisector. Moreover, let $M$ be the midpoint of $AD$. The circle $\omega_1$ with diameter $AC$ meets $BM$ at $E$, while the circle $\omega_2$ with diameter $AB$ meets $CM$ at $F$. Assume that $E$ and $F$ lie inside $ABC$. Prove that $B$, $E$, $F$, $C$ are concyclic.

5

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

6

In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible numbers of flights required to go from one of them to the other. It is known that for any city there are at most $100$ cities at distance exactly three from it. Prove that there is no city such that more than $2550$ other cities have distance exactly four from it.