2022 International Zhautykov Olympiad

1

Non-zero polynomials $P(x)$, $Q(x)$, and $R(x)$ with real coefficients satisfy the identities $$ P(x) + Q(x) + R(x) = P(Q(x)) + Q(R(x)) + R(P(x)) = 0. $$Prove that the degrees of the three polynomials are all even.

2

A ten-level $2$-tree is drawn in the plane: a vertex $A_1$ is marked, it is connected by segments with two vertices $B_1$ and $B_2$, each of $B_1$ and $B_2$ is connected by segments with two of the four vertices $C_1, C_2, C_3, C_4$ (each $C_i$ is connected with one $B_j$ exactly); and so on, up to $512$ vertices $J_1, \ldots, J_{512}$. Each of the vertices $J_1, \ldots, J_{512}$ is coloured blue or golden. Consider all permutations $f$ of the vertices of this tree, such that (i) if $X$ and $Y$ are connected with a segment, then so are $f(X)$ and $f(Y)$, and (ii) if $X$ is coloured, then $f(X)$ has the same colour. Find the maximum $M$ such that there are at least $M$ permutations with these properties, regardless of the colouring.

3

In parallelogram $ABCD$ with acute angle $A$ a point $N$ is chosen on the segment $AD$, and a point $M$ on the segment $CN$ so that $AB = BM = CM$. Point $K$ is the reflection of $N$ in line $MD$. The line $MK$ meets the segment $AD$ at point $L$. Let $P$ be the common point of the circumcircles of $AMD$ and $CNK$ such that $A$ and $P$ share the same side of the line $MK$. Prove that $\angle CPM = \angle DPL$.

4

In triangle $ABC$, a point $M$ is the midpoint of $AB$, and a point $I$ is the incentre. Point $A_1$ is the reflection of $A$ in $BI$, and $B_1$ is the reflection of $B$ in $AI$. Let $N$ be the midpoint of $A_1B_1$. Prove that $IN > IM$.

5

A polynomial $f(x)$ with real coefficients of degree greater than $1$ is given. Prove that there are infinitely many positive integers which cannot be represented in the form \[f(n+1)+f(n+2)+\cdots+f(n+k)\]where $n$ and $k$ are positive integers.

6

Do there exist two bounded sequences $a_1, a_2,\ldots$ and $b_1, b_2,\ldots$ such that for each positive integers $n$ and $m>n$ at least one of the two inequalities $|a_m-a_n|>1/\sqrt{n},$ and $|b_m-b_n|>1/\sqrt{n}$ holds?