2016 Taiwan TST Round 3

Quiz 1 Time Allowed: 1 hour 50 minutes

1

Let $n$ be a positive integer. Find the number of odd coefficients of the polynomial $(x^2-x+1)^n$.

2

Let $k$ be a positive integer. A sequence $a_0,a_1,...,a_n,n>0$ of positive integers satisfies the following conditions: $(i)$ $a_0=a_n=1$; $(ii)$ $2\leq a_i\leq k$ for each $i=1,2,...,n-1$; $(iii)$For each $j=2,3,...,k$, the number $j$ appears $\phi(j)$ times in the sequence $a_0,a_1,...,a_n$, where $\phi(j)$ is the number of positive integers that do not exceed $j$ and are coprime to $j$; $(iv)$For any $i=1,2,...,n-1$, $\gcd(a_i,a_{i-1})=1=\gcd(a_i,a_{i+1})$, and $a_i$ divides $a_{i-1}+a_{i+1}$. Suppose there is another sequence $b_0,b_1,...,b_n$ of integers such that $\frac{b_{i+1}}{a_{i+1}}>\frac{b_i}{a_i}$ for all $i=0,1,...,n-1$. Find the minimum value of $b_n-b_0$.

Quiz 2 Time Allowed: 1 hour 50 minutes

1

Let $x,y,z$ be positive real numbers satisfying $x+y+z=1$. Find the smallest $k$ such that $\frac{x^2y^2}{1-z}+\frac{y^2z^2}{1-x}+\frac{z^2x^2}{1-y}\leq k-3xyz$.

2

There's a convex $3n$-polygon on the plane with a robot on each of it's vertices. Each robot fires a laser beam toward another robot. On each of your move,you select a robot to rotate counter clockwise until it's laser point a new robot. Three robots $A$, $B$ and $C$ form a triangle if $A$'s laser points at $B$, $B$'s laser points at $C$, and $C$'s laser points at $A$. Find the minimum number of moves that can guarantee $n$ triangles on the plane.

Quiz 3 Time Allowed: 1 hour 50 minutes

1

Let $ABC$ be an acute-angled triangle, with $\angle B \neq \angle C$ . Let $M$ be the midpoint of side $BC$, and $E,F$ be the feet of the altitude from $B,C$ respectively. Denote by $K,L$ the midpoints of segments $ME,MF$, respectively. Suppose $T$ is a point on the line $KL$ such that $AT//BC$. Prove that $TA=TM$ .

2

Determine all functions $f:\mathbb{R}^+\rightarrow \mathbb{R}^+$ satisfying $f(x+y+f(y))=4030x-f(x)+f(2016y), \forall x,y \in \mathbb{R}^+$.

IMO Mock Day 1

1

Let $\lambda$ be a positive real number satisfying $\lambda=\lambda^{2/3}+1$. Show that there exists a positive integer $M$ such that $|M-\lambda^{300}|<4^{-100}$. Proposed by Evan Chen

2

Let $ABC$ be a triangle with $CA \neq CB$. Let $D$, $F$, and $G$ be the midpoints of the sides $AB$, $AC$, and $BC$ respectively. A circle $\Gamma$ passing through $C$ and tangent to $AB$ at $D$ meets the segments $AF$ and $BG$ at $H$ and $I$, respectively. The points $H'$ and $I'$ are symmetric to $H$ and $I$ about $F$ and $G$, respectively. The line $H'I'$ meets $CD$ and $FG$ at $Q$ and $M$, respectively. The line $CM$ meets $\Gamma$ again at $P$. Prove that $CQ = QP$. Proposed by El Salvador

3

You are responsible for arranging a banquet for an agency. In the agency, some pairs of agents are enemies. A group of agents are called avengers, if and only if the number of agents in the group is odd and at least $3$, and it is possible to arrange all of them around a round table so that every two neighbors are enemies. You figure out a way to assign all agents to $11$ tables so that any two agents on the same tables are not enemies, and that’s the minimum number of tables you can get. Prove that there are at least $2^{10}-11$ avengers in the agency. This problem is adapted from 2015 IMO Shortlist C7.

IMO Mock Day 2

4

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.

5

Let $f(x)$ be the polynomial with integer coefficients ($f(x)$ is not constant) such that \[(x^3+4x^2+4x+3)f(x)=(x^3-2x^2+2x-1)f(x+1)\]Prove that for each positive integer $n\geq8$, $f(n)$ has at least five distinct prime divisors.

6

Let $ABCD$ be a convex quadrilateral, and let $P$, $Q$, $R$, and $S$ be points on the sides $AB$, $BC$, $CD$, and $DA$, respectively. Let the line segment $PR$ and $QS$ meet at $O$. Suppose that each of the quadrilaterals $APOS$, $BQOP$, $CROQ$, and $DSOR$ has an incircle. Prove that the lines $AC$, $PQ$, and $RS$ are either concurrent or parallel to each other.