Problem

Source: 2016 Taiwan TST Round 3

Tags: Eulers function, Sequence, number theory, inequalities



Let $k$ be a positive integer. A sequence $a_0,a_1,...,a_n,n>0$ of positive integers satisfies the following conditions: $(i)$ $a_0=a_n=1$; $(ii)$ $2\leq a_i\leq k$ for each $i=1,2,...,n-1$; $(iii)$For each $j=2,3,...,k$, the number $j$ appears $\phi(j)$ times in the sequence $a_0,a_1,...,a_n$, where $\phi(j)$ is the number of positive integers that do not exceed $j$ and are coprime to $j$; $(iv)$For any $i=1,2,...,n-1$, $\gcd(a_i,a_{i-1})=1=\gcd(a_i,a_{i+1})$, and $a_i$ divides $a_{i-1}+a_{i+1}$. Suppose there is another sequence $b_0,b_1,...,b_n$ of integers such that $\frac{b_{i+1}}{a_{i+1}}>\frac{b_i}{a_i}$ for all $i=0,1,...,n-1$. Find the minimum value of $b_n-b_0$.