Find all positive integers $n$ that have 4 digits, all of them perfect squares, and such that $n$ is divisible by 2, 3, 5 and 7.
2016 CentroAmerican
Day1
Let $ABC$ be an acute-angled triangle, $\Gamma$ its circumcircle and $M$ the midpoint of $BC$. Let $N$ be a point in the arc $BC$ of $\Gamma$ not containing $A$ such that $\angle NAC= \angle BAM$. Let $R$ be the midpoint of $AM$, $S$ the midpoint of $AN$ and $T$ the foot of the altitude through $A$. Prove that $R$, $S$ and $T$ are collinear.
The polynomial $Q(x)=x^3-21x+35$ has three different real roots. Find real numbers $a$ and $b$ such that the polynomial $x^2+ax+b$ cyclically permutes the roots of $Q$, that is, if $r$, $s$ and $t$ are the roots of $Q$ (in some order) then $P(r)=s$, $P(s)=t$ and $P(t)=r$.
Day 2
The number "3" is written on a board. Ana and Bernardo take turns, starting with Ana, to play the following game. If the number written on the board is $n$, the player in his/her turn must replace it by an integer $m$ coprime with $n$ and such that $n<m<n^2$. The first player that reaches a number greater or equal than 2016 loses. Determine which of the players has a winning strategy and describe it.
We say a number is irie if it can be written in the form $1+\dfrac{1}{k}$ for some positive integer $k$. Prove that every integer $n \geq 2$ can be written as the product of $r$ distinct irie numbers for every integer $r \geq n-1$.
Let $\triangle ABC$ be triangle with incenter $I$ and circumcircle $\Gamma$. Let $M=BI\cap \Gamma$ and $N=CI\cap \Gamma$, the line parallel to $MN$ through $I$ cuts $AB$, $AC$ in $P$ and $Q$. Prove that the circumradius of $\odot (BNP)$ and $\odot (CMQ)$ are equal.