Let $ABC$ be an acute-angled triangle, $\Gamma$ its circumcircle and $M$ the midpoint of $BC$. Let $N$ be a point in the arc $BC$ of $\Gamma$ not containing $A$ such that $\angle NAC= \angle BAM$. Let $R$ be the midpoint of $AM$, $S$ the midpoint of $AN$ and $T$ the foot of the altitude through $A$. Prove that $R$, $S$ and $T$ are collinear.
Problem
Source: Centroamerican Olympiad 2016, problem 2
Tags: geometry, circumcircle, hard, Cyclic, concurrency
20.06.2016 00:52
Hello, should $T$ be the foot of the altitude from $A$? If so, it suffices to prove that $A',N,M$ are collinear, where $A'$ is the reflection of $A$ over $BC$. We have $AMA'$ isoceles, so it suffices to prove $\angle AMB=\angle NMB$. There is a spiral similarity centered at $N$ taking $AB$ to $MC$. To prove this, first note $\angle MCN=\angle BAN$. We can then find $\angle MNC=\angle BNA$ by using trig/ratio lemma on $BNC$ (using $\frac{KB}{KC}=\frac{c^2}{b^2}$ where $K=AC\cap AN$). Then we have $\triangle NBM\sim NAC$ and clearly $\triangle NAC\sim \triangle BAM\implies \triangle NBM\sim BAM$ and $\angle AMB=\angle NMB$ as desired.
20.06.2016 01:01
droid347 wrote: Hello, should $T$ be the foot of the altitude from $A$? Agreed, my current diagram is definitely not showing $R,S,T$ are collinear, $T$ being the foot of the altitude however makes sense.
20.06.2016 02:41
I consider $T$ the foot of the A-altitude: Let $D$ be a point such that $DB$ and $DC$ are tangent to $\odot (ABC)$ $\Longrightarrow$ since $AN$ is A-symmedian we get $A$, $N$, $D$ are collinear. Let $E$ $=$ $AN$ $\cap$ $BC$ $\Longrightarrow$ $(A,N,E,D)=-1$ and $\measuredangle EMD$ $=$ $90^{\circ}$ combining these two results we get $\measuredangle AME$ $=$ $\measuredangle EMN$, but since $TR$ $=$ $RM$ we get $\measuredangle RTM$ $=$ $\measuredangle RMT$ $\Longrightarrow$ $\measuredangle RTM$ $=$ $\measuredangle EMN$ $\Longrightarrow$ $TR\parallel MN...(1)$, but since $S$ and $R$ are the midpoints of $AN$ and $AM$ we get $SR\parallel MN...(2)$ $\Longrightarrow$ by $(1)$ and $(2)$ we get $R,S,T$ are collinear.
20.06.2016 05:18
Jutaro wrote: Let $ABC$ be an acute-angled triangle, $\Gamma$ its circumcircle and $M$ the midpoint of $BC$. Let $N$ be a point in the arc $BC$ of $\Gamma$ not containing $A$ such that $\angle NAC= \angle BAM$. Let $R$ be the midpoint of $AM$, $S$ the midpoint of $AN$ and $T$ the foot of the altitude through $A$. Prove that $R$, $S$ and $T$ are collinear. if so then: $AN$ is the symmedian,it s easy to see that $NM$ is the symmetric of the median wrt the $BC$-bisector then also wrt $BC$ ,let $A'$ be the symmetric of $A$ wrt $BC$ thus $N,M,A'$ are collinear therefore $S,T,R$ are collinear. R HAS
20.06.2016 06:06
Take a homothety with factor 2 at $A$ and the problem becomes $M$, $N$, and $A'$, the reflection of $A$ over $BC$, collinear. A $\sqrt{bc}$ inversion on $ABC$ swaps $M$ and $N$ and takes $A'$ to $O$, the circumcenter of $ABC$. An inversion about the circumcircle of $ABC$ fixes $A$ and $N$ and sends $M$ to the intersection of the tangents to the circumcircle at $B$ and $C$, $D$. Since $AND$ is a symmedian, $O$ lies on the circumcircle of $AMN$, so $A'$ lies on $MN$.
20.06.2016 18:08
$\angle RTM= \angle AMB= \angle MAC+ \angle ACB= \angle BAN+ \angle ANB= \angle BCN+ \angle MNC= \angle BMN$ $\Longrightarrow TR \parallel NM$ $\Longrightarrow TR$ passes through the midpoint of $AN$ which is $S$. Done!
20.06.2016 23:07
I am sorry for the mistake. Indeed $T$ is meant to be the foot of the altitude through $A$.
21.06.2016 10:01
Hello. A different approach. [asy][asy]import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.462330210644301, xmax = 12.702791963393949, ymin = -4.825510780754414, ymax = 6.017913607188257; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((0.9045997773425172,3.386664773003271)--(0.,0.)--(5.,0.)--cycle, aqaqaq); /* draw figures */ draw((0.9045997773425172,3.386664773003271)--(0.,0.), uququq); draw((0.,0.)--(5.,0.), uququq); draw((5.,0.)--(0.9045997773425172,3.386664773003271), uququq); draw(circle((2.5,1.1463786166634775), 2.7503061525479793)); draw((0.9045997773425172,3.386664773003271)--(0.9045997773425171,0.)); draw((-3.8510083135758397,0.)--(0.,0.)); draw((-3.8510083135758397,0.)--(0.9045997773425172,3.386664773003271)); draw((0.9045997773425172,3.386664773003271)--(2.5,0.)); draw((0.9045997773425172,3.386664773003271)--(1.7885199017311508,-1.5103072892182503)); draw((-3.8510083135758397,0.)--(1.346559839536834,0.9381787418925103)); draw((1.346559839536834,0.9381787418925103)--(0.9045997773425171,0.), linetype("2 2")); draw((2.5,0.)--(1.7885199017311508,-1.5103072892182503), linetype("2 2")); /* dots and labels */ dot((0.9045997773425172,3.386664773003271),linewidth(3.pt) + dotstyle); label("$A$", (0.8326646018420635,3.550224003952134), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.24807537037813854,-0.40), NE * labelscalefactor); dot((5.,0.),linewidth(3.pt) + dotstyle); label("$C$", (5.065562826371188,-0.41248922752193157), NE * labelscalefactor); dot((0.9045997773425171,0.),linewidth(3.pt) + dotstyle); label("$T$", (0.75,-0.4665262261329416), NE * labelscalefactor); dot((-3.8510083135758397,0.),linewidth(3.pt) + dotstyle); label("$D$", (-4.012652940278509,0.18191775719917827), NE * labelscalefactor); dot((2.5,0.),linewidth(3.pt) + dotstyle); label("$M$", (2.5078115587833767,-0.41248922752193157), NE * labelscalefactor); dot((1.7022998886712586,1.6933323865016354),linewidth(3.pt) + dotstyle); label("$R$", (1.9674415726732757,1.6229043868261113), NE * labelscalefactor); dot((1.515904295599791,0.),linewidth(3.pt) + dotstyle); label("$Y$", (1.65,-0.37646456178125826), NE * labelscalefactor); dot((1.7885199017311508,-1.5103072892182503),linewidth(3.pt) + dotstyle); label("$N$", (1.6792442467478885,-1.943537521500548), NE * labelscalefactor); dot((1.346559839536834,0.9381787418925103),linewidth(3.pt) + dotstyle); label("$S$", (1.5,0.7763247419202881), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] Let $D$ be the intersection of $BC$ with the tangent to $\Gamma $ at $A$ and suppose that $Y\equiv AN\cap BC$. The line $AN$ is the $A-$symmedian of $\triangle{ABC}$.Hence,we know that the quadruple $D,Y/B,C$ is harmonic and that $AN$ is the polar of $D$ with respect to $\Gamma $ (the above are well known but whoever needs more explanation may tell me). Thus,$DS\perp AN$ which means that $ASTD$ is cyclic.It suffices to show that $AMND$ is also cyclic,because,then, $\angle{MNA}=\angle{MDA}=\angle{MTS}\Rightarrow MN\parallel ST$,which is the desired result.Equivalently,it suffices to show that $DY\cdot MY=AY\cdot NY\Leftrightarrow DY\cdot MY=BY\cdot CY\Leftrightarrow (DM-MY)MY=(BM-MY)(BM+MY)\Leftrightarrow $ $\Leftrightarrow MD\cdot MY=MB^2$ which is Newton's relation for the harmonic quadruple $D,Y/B,C$.
22.06.2016 05:27
Consider $AM \cap \Gamma =D$ Since $RS||MN$ it's enough to prove that $TR||MN$ 1) $R$ is the midpoint of $AM$ $ \Rightarrow TR=AR=RM \Rightarrow \angle RTM = \angle RMT$ 2)$\angle NAC = \angle BAM \Rightarrow \angle BAN = \angle MAC = \angle DAC$ then $BN=CD$ 3) $\angle MBN = \angle MCD$ and $BM=MC \Rightarrow \triangle BMN \cong \triangle CMD$ ($SAS$) $\longrightarrow \angle BMN = \angle CMD = \angle AMB = \angle RMT$ 4)Then, $\angle BMN = \angle RMT = \angle RTM \Rightarrow TR||MN$ $Q.E.D$
22.06.2016 15:07
I found a tricky solution using spiral similarity twice and I thought this problem was too much for a 2nd problem in a omcc, but maybe the solution of Packito gives sense to the selection,...
27.06.2016 22:44
¿Existe forma de resolverlo partiendo de que, por menelao en el triangulo AMX, con x el corte de AN con BC, y los puntos R,T y S, se tiene que para que sean colineales es porque AR/RM * MT/TX * XS/SA = 1, y como AR/RM=1, entonces MT/TX=SA/SX
27.06.2016 22:55
Using Menelaus? I think you outlined it. I think spiral similarity is more straight-forward.
28.06.2016 06:58
Let $A' \in \odot(ABC)$ such that $AA'\parallel BC$ and let $T'$ be the reflection of $A$ over $BC$; it's easy to see that $T', M, A'$ are collinear, so $$-1=(B,C;M,P_{\infty,BC})\stackrel{A'}{=}(B,C;N,A)$$and a homothety at $A$ with ratio $\tfrac{1}{2}$ finishes the problem.
05.09.2016 09:50
Hello. I'm the happy author of this problem. I hope everyone who participated in OMCC 2016 had overjoyed it. I used it as a lemma to solve a problem from Sharygin Geometry Olympiad, correspondence round.
05.09.2016 10:54
I am giving a solution; assume AM intersects the circumcircle at D here is RS || MN if R,S,T is collinear, it should be RT || MN in triangle RTM , R is the midpoint of hypontenous AM so ,easily AR = RM = RT; <RTM = <RMT (1) <RTM = <CMN = 180 - <BMN; <RMT = 180 - <AMB = 180 - <CMD; from (1) ,we need to prove that, <BMN = <CMD; <NAC = <BAM; or, <CAD = <BAN; from sine law, BN = CD; also, <CAN = <BAM; or, <CAN = <BAD; or, <CBN = <BCD; or, <MBN = <MCD; in triangle BMN and CMD, BM = CM; BN = CD; and <MBN = <MCD; so, triangle BMN and triangle CMD is simmilar, now, <BMN = <CMD this proofs the concurrency of R,S,T btw my first solution of higher olympiad level geometry as centroamerican
05.09.2016 11:06
brothers can you give me any idea about homothaty and reflection in mathmetics
01.03.2019 19:31
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -15.653987447520949, xmax = 21.54578172460581, ymin = -17.457492228471796, ymax = 4.6489279762757745; /* image dimensions */ pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); draw((-3.7012747299195645,3.4292634132552204)--(-6.08,-3.99)--(5.04,-4.15)--cycle, linewidth(4) + rvwvcq); /* draw figures */ draw((-3.7012747299195645,3.4292634132552204)--(-6.08,-3.99), linewidth(4) + rvwvcq); draw((-6.08,-3.99)--(5.04,-4.15), linewidth(4) + rvwvcq); draw((5.04,-4.15)--(-3.7012747299195645,3.4292634132552204), linewidth(4) + rvwvcq); draw(circle((-0.48579318418222933,-1.692626300664937), 6.047567760061765), linewidth(2.8)); draw((-3.7012747299195645,3.4292634132552204)--(0.9623058187584692,-7.564260237672644), linewidth(2.8)); draw((-2.1022256244814166,-7.520166260072069)--(-3.7012747299195645,3.4292634132552204), linewidth(2) + wrwrwr); draw((-3.7012747299195645,3.429263413255214)--(xmin, 69.5000000000002*xmin + 260.6678571426657), linewidth(2.8)); /* ray */ draw((-6.08,-3.99)--(-0.7070972157740317,-17.073256496295194), linewidth(2.8)); draw((-0.7070972157740317,-17.073256496295194)--(5.04,-4.15), linewidth(2.8)); draw((-0.7070972157740317,-17.073256496295194)--(-3.7012747299195645,3.4292634132552204), linewidth(3.2)); draw((-0.52,-4.07)--(-0.7070972157740317,-17.073256496295194), linewidth(2.8) + dtsfsf); draw((-0.52,-4.07)--(xmin, 2.1805779192856143*xmin-2.93609948197148), linewidth(2.8) + dtsfsf); /* ray */ /* dots and labels */ dot((-3.7012747299195645,3.4292634132552204),linewidth(6pt) + dotstyle); label("$A$", (-4.463565081807408,3.886637624387928), NE * labelscalefactor); dot((-6.08,-3.99),linewidth(6pt) + dotstyle); label("$B$", (-7.055352278226076,-4.4070814041518505), NE * labelscalefactor); dot((5.04,-4.15),linewidth(6pt) + dotstyle); label("$C$", (5.38522626458353,-4.6815059308314755), NE * labelscalefactor); dot((-0.52,-4.07),dotstyle); label("$M$", (-0.19473911123548462,-3.705774280415031), NE * labelscalefactor); dot((0.9623058187584692,-7.564260237672644),dotstyle); label("$M'$", (0.537059626576845,-8.49295769027071), NE * labelscalefactor); dot((-2.110637364959782,-0.3203682933723899),dotstyle); label("$R$", (-1.7498114290866853,-0.016288977277850253), NE * labelscalefactor); dot((-3.7012747299195623,3.429263413255221),dotstyle); dot((-2.1022256244814166,-7.520166260072069),dotstyle); label("$N$", (-3.1219340624848035,-8.035583479138003), NE * labelscalefactor); dot((-2.9017501772004906,-2.0454514234084247),dotstyle); label("$S$", (-2.6035766232010698,-1.784802593657656), NE * labelscalefactor); dot((-3.8084969876150505,-4.022683496581078),dotstyle); label("$T$", (-4.616023152184977,-4.803472387133531), NE * labelscalefactor); dot((-3.915719245310536,-11.474630406417367),dotstyle); label("$D$", (-4.920939292940114,-11.969001694879294), NE * labelscalefactor); dot((-0.7070972157740317,-17.073256496295194),dotstyle); label("$K_A$", (-0.5911300942171632,-16.756185104734975), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Let $MN \cap AT=D$, and let the tangents at $B$ and $C$ intersect at $K_A$, $$-1=(A,N; AN \cap BC,K_A) \overset{M}{=} (A,D;T, \infty_{MK_A}) \Longrightarrow AT=TD$$and then finish off using mid-point theorem
02.03.2019 13:09
Let $A'$ be the reflection of $A$ over $BC$. It suffices to show that $M,N,A'$ are collinear. We know that the reflection of the $A-$ HM point over $BC$ is $N$. Thus it follows that if $N'$ is the reflection of $N$ over $BC$ then $N'\in \odot(A'BC)$. Also, $N'\in AM$ from definition. Reflecting $A,N',M$ over $BC$ yields that $A',M,N$ are collinear. $\blacksquare$.
02.03.2019 13:52
Here is my solution for this problem Solution Let $P$ $\in$ ($O$) such as $AT$ $\parallel$ $BC$; $A'$ be reflection of $A$ through $BC$ We have: 1 = $\dfrac{MB}{MC}$ = $\dfrac{AC}{AB}$ . $\dfrac{NB}{NC}$ = $\dfrac{PB}{PC}$ . $\dfrac{NB}{NC}$ or $N$, $M$, $P$ are collinear But: $\dfrac{A'T}{A'A}$ = $\dfrac{TM}{AP}$ = $\dfrac{1}{2}$ so: $A'$, $M$, $P$ are collinear Then: $P$, $M$, $N$, $A'$ are collinear or $R$, $S$, $T$ are collinear
02.03.2019 22:02
I've got synthetic one. I used notations as in diagram in post #10 $AB=c\wedge BC=a\wedge CA=b$ We want to prove $MN||ST$ which is $\frac{MY}{NY}=\frac{TY}{SY}$ Line $AN$ is $A-$symedian so $BY=\frac{ac^2}{b^2+c^2}\wedge CY=\frac{ab^2}{b^2+c^2}$ $MY=|\frac{a}{2}-\frac{ab^2}{b^2+c^2}|=\frac{a|b^2-c^2|}{2(b^2+c^2)}$ In $BT$ exceptionally the length is signed, so we can work even if $ABC$ isn't acute $BT=c\cos\angle ABC=\frac{a^2+c^2-b^2}{2a}$ $TY=|BY-BT|=|\frac{ac^2}{b^2+c^2}-\frac{a^2+c^2-b^2}{2a}|=\frac{|b^2-c^2||a^2-b^2-c^2|}{2a(b^2+c^2)}$ Concyclicity yields $AY\cdot NY=BY\cdot CY=\frac{a^2b^2c^2}{(b^2+c^2)^2}$ $SY=|NS-NY|=\frac{|AY-NY|}{2}$ which is true By Stewart's theorem $AY^2=\frac{BY\cdot AC^2+CY\cdot AB^2}{BC}-BY\cdot CY=\frac{2b^2c^2}{b^2+c^2}-\frac{a^2b^2c^2}{(b^2+c^2)^2}$ $\frac{MY}{NY}=\frac{TY}{SY}\iff \frac{\frac{a|b^2-c^2|}{2(b^2+c^2)}}{NY}=\frac{\frac{|b^2-c^2||a^2-b^2-c^2|}{2a(b^2+c^2)}}{\frac{|AY-NY|}{2}}\iff \frac{a^2}{ AY\cdot NY}=\frac{2|a^2-b^2-c^2|}{|AY^2-NY\cdot AY|}\iff$ $\frac{a^2}{\frac{a^2b^2c^2}{(b^2+c^2)^2}}=\frac{2|a^2-b^2-c^2|}{|\frac{2b^2c^2}{b^2+c^2}-\frac{a^2b^2c^2}{(b^2+c^2)^2}-\frac{a^2b^2c^2}{(b^2+c^2)^2}|}\iff \frac{1}{b^2c^2}=\frac{2|a^2-b^2-c^2|}{2b^2c^2|b^2+c^2-a^2|}$
01.04.2021 20:58
It is clear that $AN$ is the $A$-symmedian of $\triangle ABC$. Let $A'=AT\cap MN$. Also let $R$ and $K$ be the intersections of the $\angle A$ bisector with $(ABC)$ and $BC$ respectively. By Russia 2009 $NMKR$ is cyclic. So by $\angle MA'T=90-\angle NMK=90-\angle NCA=90-\angle C-\angle CAM=\angle AMC-90=\angle MAT$. we get that $T$ is the midpoint of $AA'$ and by homothety we are done.
24.12.2022 06:16
First, $\angle MAC + \angle NAM = \angle NAC = \angle BAM = \angle BAN + \angle NAM$ $\Rightarrow$ $\angle BAN = \angle MAC$. In the $\triangle AMN$ we have that $\frac{AS}{AN} = \frac{AR}{AM} = \frac{1}{2}$, so by Thales's theorem we get that $SR \parallel MN$. As $\angle BAM = \angle NAC$ and $\angle ANC = \angle ABC$ by case $AA$, $\triangle BAM$ $\sim$ $NAC$ . Then, $\frac{MA}{AC} = \frac{BM}{NC} = \frac{MC}{CN}$. Notice that $\angle BAN = \angle BCN = \angle MAC$ so by case $LAL$ we get that $\triangle MAC \sim \triangle MCN$. Hence, $\angle AMC = \angle NMC = 180^{\circ} - \angle BMA = 180^{\circ} - \angle BMN \Rightarrow \angle BMA = \angle BMN$ We see that $R$ Is circumcenter of $\triangle ATM$ $\Rightarrow$ $RA = RT = RM \Rightarrow \angle TMR = \angle MTR = \angle BMA = \angle BMN$. Hence, $\angle ART = 2 \angle AMT = 2 \angle BMA = \angle BMA + \angle BMN = \angle AMN$ It follows that $TR \parallel MN $ and since $SR \parallel MN$, then $R$, $S$ and $T$ lies on the same line parallel to $MN$ $\blacksquare$
Attachments:

24.12.2022 06:40
Let $P_A$ be the $A$ Humpty point of triangle $ABC$, $A'$ is the reflection of $A$ over line $BC$. We have $P_A$ is the reflection of $N$ over line $BC$. Thus, $M,N,A'$ are collinear. Then, $TS//A'N, TR//A'M \Rightarrow R,S,T$ are collinear.