Find all triples $(x,y, z)$ of real numbers such that $x^2 + y^2 + z^2 + 1 = xy + yz + zx + |x - 2y + z|$.
2010 Saudi Arabia BMO TST
Day I
Let $ABC$ be an acute triangle and let $MNPQ$ be a square inscribed in the triangle such that $M ,N \in BC$, $P \in AC$, $Q \in AB$. Prove that $area \, [MNPQ] \le \frac12 area\, [ABC]$.
Let $(a_n )_{n \ge o}$ and $(b_n )_{n \ge o}$ be sequences defined by $a_{n+2} = a_{n+1}+ a_n$ , $n = 0 , 1 , . .. $, $a_0 = 1$, $a_1 = 2$, and $b_{n+2} = b_{n+1} + b_n$ , $n = 0 , 1 , . . .$, $b_0 = 2$, $b_1 = 1$. How many integers do the sequences have in common?
Let $f : N \to [0, \infty)$ be a function satisfying the following conditions: a) $f(4)=2$ b) $\frac{1}{f( 0 ) + f( 1)} + \frac{1}{f( 1 ) + f( 2 )} + ... + \frac{1}{f (n ) + f(n + 1) }= f ( n + 1)$ for all integers $n \ge 0$. Find $f(n)$ in closed form.
Day II
Find all pairs $(x, y)$ of positive integers such that $x^2 + y^2 + 33^2 =2010\sqrt{x-y}$.
Show that in any triangle $ABC$ with $\angle A = 90^o$ the following inequality holds $$(AB -AC)^2(BC^2 + 4AB \cdot AC)^ 2 < 2BC^6.$$
Let $a > 0$ be a real number and let $f : R \to R$ be a function satisfying $$f(x_1) + f(x_2) \ge a f(x_1 + x_2), \forall x_1 ,x_2 \in R.$$Prove that $$f(x_1) + f(x_2) +(x_3) \ge \frac{3a^2}{a+2} f(x_1+ x_2 + x_3), \forall x_1 ,x_2,x_3 \in R$$.
In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Denote by $P, Q, R, S$ the orthogonal projections of $O$ onto $AB$ , $BC$ ,$CD$ , $DA$, respectively. Prove that $$PA \cdot AB + RC \cdot CD =\frac12 (AD^2 + BC^2)$$if and only if $$QB \cdot BC + SD \cdot DA = \frac12(AB ^2 + CD^2)$$
Day III
Find all non-empty sets $S$ of nonzero real numbers such that a) $S$ has at most $5$ elements b) If $x$ is in $S$, then so are $1- x$ and $\frac{1}{x}$.
Consider a triangle $ABC$ and a point $P$ in its interior. Lines $PA$, $PB$, $PC$ intersect $BC$, $CA$, $AB$ at $A', B', C'$ , respectively. Prove that $$\frac{BA'}{BC}+ \frac{CB'}{CA}+ \frac{AC'}{AB}= \frac32$$if and only if at least two of the triangles $PAB$, $PBC$, $PCA$ have the same area.
Find all functions $f : R \to R$ such that $$xf(x+xy)= xf(x)+ f(x^2)f(y)$$for all $x,y \in R$.
Find all triples $(x,y, z)$ of integers such that $$\begin{cases} x^2y + y^2z + z^2x= 2010^2 \\ xy^2 + yz^2 + zx^2= -2010 \end{cases}$$
Day IV
Find all triples $(x,y,z)$ of positive integers such that $3^x + 4^y = 5^z$.
Quadrilateral $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle. Altitude $DE$ in triangle $ABD$ intersects diagonal $AC$ in $F$. Prove that $FB = BC$
How many integers in the set $\{1, 2 ,..., 2010\}$ divide $5^{2010!}- 3^{2010!}$?
Let $a > 0$. If the system $$\begin{cases} a^x + a^y + a^z = 14 - a \\ x + y + z = 1 \end{cases}$$has a solution in real numbers, prove that $a \le 8$.
Day V
Find all integers $n$ for which $9n + 16$ and $16n + 9$ are both perfect squares.
Evaluate the sum $$1 + 2 + 3 - 4 - 5 + 6 + 7 + 8 - 9 - 1 0 + . . . - 2010$$, where each three consecutive signs $+$ are followed by two signs $-$.
Let $ABC$ be a right angled triangle with $\angle A = 90^o$and $BC = a$, $AC = b$, $AB = c$. Let $d$ be a line passing trough the incenter of triangle and intersecting the sides $AB$ and $AC$ in $P$ and $Q$, respectively. (a) Prove that $$b \cdot \left( \frac{PB}{PA}\right)+ c \cdot \left( \frac{QC}{QA}\right) =a$$(b) Find the minimum of $$\left( \frac{PB}{PA}\right)^ 2+\left( \frac{QC}{QA}\right)^ 2$$
Find all primes $p, q$ satisfying the equation $2p^q - q^p = 7.$