Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so?
2021 Malaysia IMONST 1
Seniors
If $x +\frac{1}{x} = 5$, what is the value of $x^3 +\frac{1}{x^3} $ ?
There are $10$ girls in a class, all with different heights. They want to form a queue so that no girl stands directly between two girls shorter than her. How many ways are there to form the queue?
The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus?
How many integers $n$ (with $1 \le n \le 2021$) have the property that $8n + 1$ is a perfect square?
Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle.
Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$. How many passcodes satisfy these conditions?
A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day?
Find the sum of (decimal) digits of the number $(10^{2021} + 2021)^2$?
Determine the number of integer solutions $(x, y, z)$, with $0 \le x, y, z \le 100$, for the equation $$(x - y)^2 + (y + z)^2 = (x + y)^2 + (y - z)^2.$$
Given two points $ A$ and $ B$ and two circles, $\Gamma_1$ with center $A$ and passing through $ B$, and $\Gamma_2$ with center $ B$ and passing through $ A$. Line $AB$ meets $\Gamma_2$ at point $C$. Point $D$ lies on $\Gamma_2$ such that $\angle CDB = 57^o$. Line $BD$ meets $\Gamma_1$ at point $E$. What is $\angle CAE$, in degrees?
Determine the number of positive integer solutions $(x,y, z)$ to the equation $xyz = 2(x + y + z)$.
Jasmin has a mobile phone that runs on a battery. When the battery is dead, it takes $2$ hours to recharge it fully, if she is not using the phone. If she uses the phone while recharging, $75\%$ of the charge obtained is immediately consumed and the remaining is stored in the battery. One day, her battery died. Jasmin took $2$ hours $30$ minutes to recharge the battery fully. For how many minutes did she use the phone while recharging?
Given a function $p(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$. Each coefficient $a, b, c, d, e$, and$ f$ is equal to either $ 1$ or $-1$. If $p(2) = 11$, what is the value of $p(3)$?
Find the sum of all integers $n$ with this property: both $n$ and $n + 2021$ are perfect squares.
Given a square $ABCD$ with side length $6$. We draw line segments from the midpoints of each side to the vertices on the opposite side. For example, we draw line segments from the midpoint of side $AB$ to vertices $C$ and $D$. The eight resulting line segments together bound an octagon inside the square. What is the area of this octagon?
Determine the sum of all positive integers $n$ that satisfy the following condition: when $6n + 1$ is written in base $10$, all its digits are equal.
How many real numbers $x$ are solutions to the equation $|x - 2| - 4 =\frac{1}{|x - 3|}$ ?
A company has a secret safe box that is locked by six locks. Several copies of the keys are distributed among the directors of the company. Each key can unlock exactly one lock. Each director has three keys for three different locks. No two directors can unlock the same three locks. No two directors together can unlock the safe. What is the maximum possible number of directors in the company?
The cells of a $2021\times 2021$ table are filled with numbers using the following rule. The bottom left cell, which we label with coordinate $(1, 1)$, contains the number $0$. For every other cell $C$, we consider a route from $(1, 1)$ to $C$, where at each step we can only go one cell to the right or one cell up (not diagonally). If we take the number of steps in the route and add the numbers from the cells along the route, we obtain the number in cell $C$. For example, the cell with coordinate $(2, 1)$ contains $1 = 1 + 0$, the cell with coordinate $(3, 1)$ contains $3 = 2 + 0 + 1$, and the cell with coordinate $(3, 2)$ contains $7 = 3 + 0 + 1 + 3$. What is the last digit of the number in the cell $(2021, 2021)$?
IMONST = International Mathematical Olympiad National Selection Test Malaysia 2021 Round 1 Juniors Time: 2.5 hours Rules$\bullet$ For each problem you have to submit the answer only. The answer to each problem is a non-negative integer. $\bullet$ No mark is deducted for a wrong answer. $\bullet$ The maximum number of points is (1 + 2 + 3 + 4) x 5 = 50 points. Part A (1 point each) p1. Adam draws $7$ circles on a paper, with radii $ 1$ cm, $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm, and $7$ cm. The circles do not intersect each other. He colors some circles completely red, and the rest of the circles completely blue. What is the minimum possible difference (in cm$^2$) between the total area of the red circles and the total area of the blue circles? p2. The number $2021$ has a special property that the sum of any two neighboring digits in the number is a prime number ($2 + 0 = 2$, $0 + 2 = 2$, and $2 + 1 = 3$ are all prime numbers). Among numbers from $2021$ to $2041$, how many of them have this property? p3. Clarissa opens a pet shop that sells three types of pets: goldshes, hamsters, and parrots. The pets inside the shop together have a total of $14$ wings, $24$ heads, and $62$ legs. How many goldshes are there inside Clarissa's shop? p4. A positive integer $n$ is called special if $n$ is divisible by $4$, $n+1$ is divisible by $5$, and $n + 2$ is divisible by $6$. How many special integers smaller than $1000$ are there? p5. Suppose that this decade begins on $ 1$ January $2020$ (which is a Wednesday) and the next decade begins on $ 1$ January $2030$. How many Wednesdays are there in this decade? Part B (2 points each) p6. Given an isosceles triangle $ABC$ with $AB = AC$. Let D be a point on $AB$ such that $CD$ is the bisector of $\angle ACB$. If $CB = CD$, what is $\angle ADC$, in degrees? p7. Determine the number of isosceles triangles with the following properties: all the sides have integer lengths (in cm), and the longest side has length $21$ cm. p8. Haz marks $k$ points on the circumference of a circle. He connects every point to every other point with straight lines. If there are $210$ lines formed, what is $k$? p9. What is the smallest positive multiple of $24$ that can be written using digits $4$ and $5$ only? p10. In a mathematical competition, there are $2021$ participants. Gold, silver, and bronze medals are awarded to the winners as follows: (i) the number of silver medals is at least twice the number of gold medals, (ii) the number of bronze medals is at least twice the number of silver medals, (iii) the number of all medals is not more than $40\%$ of the number of participants. The competition director wants to maximize the number of gold medals to be awarded based on the given conditions. In this case, what is the maximum number of bronze medals that can be awarded? Part C (3 points each) p11. Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so? p12. If $x +\frac{1}{x} = 5$, what is the value of $x^3 +\frac{1}{x^3} $ ? p13. There are $10$ girls in a class, all with different heights. They want to form a queue so that no girl stands directly between two girls shorter than her. How many ways are there to form the queue? p14. The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus? p15. How many integers $n$ (with $1 \le n \le 2021$) have the property that $8n + 1$ is a perfect square? Part D (4 points each) p16. Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle. p17. Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$. How many passcodes satisfy these conditions? p18. A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day? p19. Find the sum of (decimal) digits of the number $(10^{2021} + 2021)^2$? p20. Determine the number of integer solutions $(x, y, z)$, with $0 \le x, y, z \le 100$, for the equation$$(x - y)^2 + (y + z)^2 = (x + y)^2 + (y - z)^2.$$
International Mathematical Olympiad National Selection Test Malaysia 2021 Round 1 Primary Time: 2.5 hours Rules$\bullet$ For each problem you have to submit the answer only. The answer to each problem is a non-negative integer. $\bullet$ No mark is deducted for a wrong answer. $\bullet$ The maximum number of points is (1 + 2 + 3 + 4) x 5 = 50 points. Part A (1 point each) p1. Faris has six cubes on his table. The cubes have a total volume of $2021$ cm$^3$. Five of the cubes have side lengths $5$ cm, $5$ cm, $6$ cm, $6$ cm, and $11$ cm. What is the side length of the sixth cube (in cm)? p2. What is the sum of the first $200$ even positive integers? p3. Anushri writes down five positive integers on a paper. The numbers are all different, and are all smaller than $10$. If we add any two of the numbers on the paper, then the result is never $10$. What is the number that Anushri writes down for certain? p4. If the time now is $10.00$ AM, what is the time $1,000$ hours from now? Note: Enter the answer in a $12$-hour system, without minutes and AM/PM. For example, if the answer is $9.00$ PM, just enter $9$. p5. Aminah owns a car worth $10,000$ RM. She sells it to Neesha at a $10\%$ profit. Neesha sells the car back to Aminah at a $10\%$ loss. How much money did Aminah make from the two transactions, in RM? Part B (2 points each) p6. Alvin takes 250 small cubes of side length $1$ cm and glues them together to make a cuboid of size $5$ cm $\times 5$ cm $\times 10$ cm. He paints all the faces of the large cuboid with the color green. How many of the small cubes are painted by Alvin? p7. Cikgu Emma and Cikgu Tan select one integer each (the integers do not have to be positive). The product of the two integers they selected is $2021$. How many possible integers could have been selected by Cikgu Emma? p8. A three-digit number is called superb if the first digit is equal to the sum of the other two digits. For example, $431$ and $909$ are superb numbers. How many superb numbers are there? p9. Given positive integers $a, b, c$, and $d$ that satisfy the equation $4a = 5b =6c = 7d$. What is the smallest possible value of $ b$? p10. Find the smallest positive integer n such that the digit sum of n is divisible by $5$, and the digit sum of $n + 1$ is also divisible by $5$. Note: The digit sum of $1440$ is $1 + 4 + 4 + 0 = 9$. Part C (3 points each) p11. Adam draws $7$ circles on a paper, with radii $ 1$ cm, $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm, and $7$ cm. The circles do not intersect each other. He colors some circles completely red, and the rest of the circles completely blue. What is the minimum possible difference (in cm$^2$) between the total area of the red circles and the total area of the blue circles? p12. The number $2021$ has a special property that the sum of any two neighboring digits in the number is a prime number ($2 + 0 = 2$, $0 + 2 = 2$, and $2 + 1 = 3$ are all prime numbers). Among numbers from $2021$ to $2041$, how many of them have this property? p13. Clarissa opens a pet shop that sells three types of pets: goldshes, hamsters, and parrots. The pets inside the shop together have a total of $14$ wings, $24$ heads, and $62$ legs. How many goldshes are there inside Clarissa's shop? p14. A positive integer $n$ is called special if $n$ is divisible by $4$, $n+1$ is divisible by $5$, and $n + 2$ is divisible by $6$. How many special integers smaller than $1000$ are there? p15. Suppose that this decade begins on $ 1$ January $2020$ (which is a Wednesday) and the next decade begins on $ 1$ January $2030$. How many Wednesdays are there in this decade? Part D (4 points each) p16. Given an isosceles triangle $ABC$ with $AB = AC$. Let D be a point on $AB$ such that $CD$ is the bisector of $\angle ACB$. If $CB = CD$, what is $\angle ADC$, in degrees? p17. Determine the number of isosceles triangles with the following properties: all the sides have integer lengths (in cm), and the longest side has length $21$ cm. p18. Haz marks $k$ points on the circumference of a circle. He connects every point to every other point with straight lines. If there are $210$ lines formed, what is $k$? p19. What is the smallest positive multiple of $24$ that can be written using digits $4$ and $5$ only? p20. In a mathematical competition, there are $2021$ participants. Gold, silver, and bronze medals are awarded to the winners as follows: (i) the number of silver medals is at least twice the number of gold medals, (ii) the number of bronze medals is at least twice the number of silver medals, (iii) the number of all medals is not more than $40\%$ of the number of participants. The competition director wants to maximize the number of gold medals to be awarded based on the given conditions. In this case, what is the maximum number of bronze medals that can be awarded? PS. Problems 11-20 were also used in Juniors as 1-10.