2005 Taiwan TST Round 2

1st independent study

1

Let $a,b$ be two constants within the open interval $(0,\frac{1}{2})$. Find all continous functions $f(x)$ such that \[f(f(x))=af(x)+bx\] holds for all real $x$. This is much harder than the problems we had in the 1st TST...

2

Find all positive integers $n \ge 3$ such that there exists a positive constant $M_n$ satisfying the following inequality for any $n$ positive reals $a_1, a_2,\dots\>,a_n$: \[\displaystyle \frac{a_1+a_2+\cdots\>+a_n}{\sqrt[n]{a_1a_2\cdots\>a_n}} \le M_n \biggl( \frac{a_2}{a_1} + \frac{a_3}{a_2} +\cdots\>+ \frac{a_n}{a_{n-1}} + \frac {a_1}{a_n} \biggr).\] Moreover, find the minimum value of $M_n$ for such $n$. The difficulty is finding $M_n$...

2nd independent study

1

It is known that there exists a point $P$ within the interior of $\triangle ABC$ satisfying the following conditions: (i) $\angle PAB \ge 30^\circ$ and $\angle APB \ge \angle PCB + 30^\circ$; (ii) $BP \cdot BC=CP \cdot AB.$ Prove that $\angle BAC \ge 60^\circ$, and that equality holds only when $\triangle ABC$ is equilateral.

2

Starting from a positive integer $n$, we can replace the current number with a multiple of the current number or by deleting one or more zeroes from the decimal representation of the current number. Prove that for all values of $n$, it is possible to obtain a single-digit number by applying the above algorithm a finite number of times. There is a nice solution to this...

3rd independent study

1

Prove that for any quadratic polynomial $f(x)=x^2+px+q$ with integer coefficients, it is possible to find another polynomial $q(x)=2x^2+rx+s$ with integer coefficients so that \[\{f(x)|x \in \mathbb{Z} \} \cap \{g(x)|x \in \mathbb{Z} \} = \emptyset .\]

4

A quadrilateral $PQRS$ has an inscribed circle, the points of tangencies with sides $PQ$, $QR$, $RS$, $SP$ being $A$, $B$, $C$, $D$, respectively. Let the midpoints of $AB$, $BC$, $CD$, $DA$ be $E$, $F$, $G$, $H$, respectively. Prove that the angle between segments $PR$ and $QS$ is equal to the angle between segments $EG$ and $FH$.

Final Exam

Day 1

1

Prove that \[\displaystyle \sum_{\{i,j,k\}=\{1,2,3\}} \csc ^{13} \frac{2^i \pi}{7}\csc ^{14} \frac{2^j \pi}{7}\csc ^{2005} \frac{2^k\pi}{7}\] is rational. Here, $(i,j,k)$ is summed over all possible permutations of $(1,2,3)$.

2

In $\triangle ABC$, $AD$ is the bisector of $\angle A$, and $E$, $F$ are the feet of the perpendiculars from $D$ to $AC$ and $AB$, respectively. $H$ is the intersection of $BE$ and $CF$, and $G$, $I$ are the feet of the perpendiculars from $D$ to $BE$ and $CF$, respectively. Prove that both $AFEH$ and $AEIH$ are cyclic quadrilaterals.

3

In the interior of an ellipse with major axis 2 and minor axis 1, there are more than 6 segments with total length larger than 15. Prove that there exists a line passing through all of the segments.

Day 2

1

Positive integers $a,b,c,d$ satisfy $a+c=10$ and \[\displaystyle S=\frac{a}{b} + \frac{c}{d} <1.\] Find the maximum value of $S$.

2

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. Proposed by Hojoo Lee, Korea

3

Let $k$ be a fixed integer greater than 1, and let ${m=4k^2-5}$. Show that there exist positive integers $a$ and $b$ such that the sequence $(x_n)$ defined by \[x_0=a,\quad x_1=b,\quad x_{n+2}=x_{n+1}+x_n\quad\text{for}\quad n=0,1,2,\dots,\] has all of its terms relatively prime to $m$. Proposed by Jaroslaw Wroblewski, Poland