Let $ABC$ be a triangle with $AB<AC$. Let $\omega$ be a circle passing through $B, C$ and assume that $A$ is inside $\omega$. Suppose $X, Y$ lie on $\omega$ such that $\angle BXA=\angle AYC$. Suppose also that $X$ and $C$ lie on opposite sides of the line $AB$ and that $Y$ and $B$ lie on opposite sides of the line $AC$. Show that, as $X, Y$ vary on $\omega$, the line $XY$ passes through a fixed point. Proposed by Aaron Thomas, UK
2021 Balkan MO
September 8th
Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $f(x+f(x)+f(y))=2f(x)+y$ for all positive reals $x,y$. Proposed by Athanasios Kontogeorgis, Greece
Let $a, b$ and $c$ be positive integers satisfying the equation $(a, b) + [a, b]=2021^c$. If $|a-b|$ is a prime number, prove that the number $(a+b)^2+4$ is composite. Proposed by Serbia
Problem 4. Angel has a warehouse, which initially contains $100$ piles of $100$ pieces of rubbish each. Each morning, Angel performs exactly one of the following moves: (a) He clears every piece of rubbish from a single pile. (b) He clears one piece of rubbish from each pile. However, every evening, a demon sneaks into the warehouse and performs exactly one of the following moves: (a) He adds one piece of rubbish to each non-empty pile. (b) He creates a new pile with one piece of rubbish. What is the first morning when Angel can guarantee to have cleared all the rubbish from the warehouse?