2020 South East Mathematical Olympiad

Grade 10

Day 1

1

Let $f(x)=a(3a+2c)x^2-2b(2a+c)x+b^2+(c+a)^2$ $(a,b,c\in R, a(3a+2c)\neq 0).$ If $$f(x)\leq 1$$for any real $x$, find the maximum of $|ab|.$

2

In a scalene triangle $\Delta ABC$, $AB<AC$, $PB$ and $PC$ are tangents of the circumcircle $(O)$ of $\Delta ABC$. A point $R$ lies on the arc $\widehat{AC}$(not containing $B$), $PR$ intersects $(O)$ again at $Q$. Suppose $I$ is the incenter of $\Delta ABC$, $ID \perp BC$ at $D$, $QD$ intersects $(O)$ again at $G$. A line passing through $I$ and perpendicular to $AI$ intersects $AB,AC$ at $M,N$, respectively. Prove that, if $AR \parallel BC$, then $A,G,M,N$ are concyclic.

3

Given a polynomial $f(x)=x^{2020}+\sum_{i=0}^{2019} c_ix^i$, where $c_i \in \{ -1,0,1 \}$. Denote $N$ the number of positive integer roots of $f(x)=0$ (counting multiplicity). If $f(x)=0$ has no negative integer roots, find the maximum of $N$.

4

Let $a_1,a_2,\dots, a_{17}$ be a permutation of $1,2,\dots, 17$ such that $(a_1-a_2)(a_2-a_3)\dots(a_{17}-a_1)=n^{17}$ .Find the maximum possible value of $n$ .

Day 2

5

Consider the set $I=\{ 1,2, \cdots, 2020 \}$. Let $W= \{w(a,b)=(a+b)+ab | a,b \in I \} \cap I$, $Y=\{y(a,b)=(a+b) \cdot ab | a,b \in I \} \cap I$ be its two subsets. Further, let $X= W \cap Y$. (1) Find the sum of maximal and minimal elements in $X$. (2) An element $n=y(a,b) (a \le b)$ in $Y$ is called excellent, if its representation is not unique (for instance, $20=y(1,5)=y(2,3)$). Find the number of excellent elements in $Y$. Note(2) is only for Grade 11.

6

In a quadrilateral $ABCD$, $\angle ABC=\angle ADC <90^{\circ}$. The circle with diameter $AC$ intersects $BC$ and $CD$ again at $E,F$, respectively. $M$ is the midpoint of $BD$, and $AN \perp BD$ at $N$. Prove that $M,N,E,F$ is concyclic.

7

Given any prime $p \ge 3$. Show that for all sufficient large positive integer $x$, at least one of $x+1,x+2,\cdots,x+\frac{p+3}{2}$ has a prime divisor greater than $p$.

8

Using a nozzle to paint each square in a $1 \times n$ stripe, when the nozzle is aiming at the $i$-th square, the square is painted black, and simultaneously, its left and right neighboring square (if exists) each has an independent probability of $\tfrac{1}{2}$ to be painted black. In the optimal strategy (i.e. achieving least possible number of painting), the expectation of number of painting to paint all the squares black, is $T(n)$. Find the explicit formula of $T(n)$.

Grade 11

Day 1

1

Let $a_1,a_2,\dots, a_{17}$ be a permutation of $1,2,\dots, 17$ such that $(a_1-a_2)(a_2-a_3)\dots(a_{17}-a_1)=2^n$ . Find the maximum possible value of positive integer $n$ .

2

In a scalene triangle $\Delta ABC$, $AB<AC$, $PB$ and $PC$ are tangents of the circumcircle $(O)$ of $\Delta ABC$. A point $R$ lies on the arc $\widehat{AC}$(not containing $B$), $PR$ intersects $(O)$ again at $Q$. Suppose $I$ is the incenter of $\Delta ABC$, $ID \perp BC$ at $D$, $QD$ intersects $(O)$ again at $G$. A line passing through $I$ and perpendicular to $AI$ intersects $AG,AC$ at $M,N$, respectively. $S$ is the midpoint of arc $\widehat{AR}$, and$SN$ intersects $(O)$ again at $T$. Prove that, if $AR \parallel BC$, then $M,B,T$ are collinear.

Same as Grade 10 P3 - 3

4

Let $0\leq a_1\leq a_2\leq\hdots\leq a_{n-1}\leq a_n$ such that $a_1+a_2+\hdots+a_n=1$. Prove for any non-negative numbers $x_1,x_2,\hdots,x_n$, $y_1,y_2,\hdots,y_n$ the inequality $$\left(\sum_{i=1}^n a_ix_i - \prod_{i=1}^n x_i^{a_i}\right) \left(\sum_{i=1}^n a_iy_i - \prod_{i=1}^n y_i^{a_i}\right) \leq a_n^2\left(n\sqrt{\sum_{i=1}^n x_i\sum_{i=1}^n y_i} - \sum_{i=1}^n\sqrt{x_i} \sum_{i=1}^n\sqrt{y_i}\right)^2.$$

Day 2

Same as Grade 10 P5 (with part 2.) - 5

Same as Grade 10 P6 - 6

7

Arrange all square-free positive integers in ascending order $a_1,a_2,a_3,\ldots,a_n,\ldots$. Prove that there are infinitely many positive integers $n$, such that $a_{n+1}-a_n=2020$.

Same as Grade 10 P8. - 8