Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as value of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .
2019 Greece Team Selection Test
Let a triangle $ABC$ inscribed in a circle $\Gamma$ with center $O$. Let $I$ the incenter of triangle $ABC$ and $D, E, F$ the contact points of the incircle with sides $BC, AC, AB$ of triangle $ABC$ respectively . Let also $S$ the foot of the perpendicular line from $D$ to the line $EF$.Prove that line $SI$ passes from the antidiametric point $N$ of $A$ in the circle $\Gamma$.( $AN$ is a diametre of the circle $\Gamma$).
Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: Each number in the table is congruent to $1$ modulo $n$. The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.
Find all functions $f:(0,\infty)\mapsto\mathbb{R}$ such that $\displaystyle{(y^2+1)f(x)-yf(xy)=yf\left(\frac{x}{y}\right),}$ for every $x,y>0$.