Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as value of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .
Problem
Source: Greece TST 2019 p1
Tags: combinatorics, minimum value, maximum value, hexagon, Equilateral