The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\]for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
2020 Taiwan TST Round 1
Quiz 1
Find all triples $(a, b, c)$ of positive integers such that $a^3 + b^3 + c^3 = (abc)^2$.
Quiz 2
Let $a$, $b$, $c$, $d$ be real numbers satisfying \begin{align*} (a + c)(b + d) = \sqrt{2}(ac - 2bd - 1). \end{align*}Show that \begin{align*} (ab - 1)^2 + (bc - 1)^2 + (cd - 1)^2 + (da - 1)^2 + (ac - 1)^2 + (2bd + 1)^2 \ge 4. \end{align*}
Let point $H$ be the orthocenter of a scalene triangle $ABC$. Line $AH$ intersects with the circumcircle $\Omega$ of triangle $ABC$ again at point $P$. Line $BH, CH$ meets with $AC,AB$ at point $E$ and $F$, respectively. Let $PE, PF$ meet $\Omega$ again at point $Q,R$, respectively. Point $Y$ lies on $\Omega$ so that lines $AY,QR$ and $EF$ are concurrent. Prove that $PY$ bisects $EF$.
Quiz 3
Let $ABC$ be an acute-angled triangle and let $D, E$, and $F$ be the feet of altitudes from $A, B$, and $C$ to sides $BC, CA$, and $AB$, respectively. Denote by $\omega_B$ and $\omega_C$ the incircles of triangles $BDF$ and $CDE$, and let these circles be tangent to segments $DF$ and $DE$ at $M$ and $N$, respectively. Let line $MN$ meet circles $\omega_B$ and $\omega_C$ again at $P \ne M$ and $Q \ne N$, respectively. Prove that $MP = NQ$. (Vietnam)
We say that a set $S$ of integers is rootiful if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.
Mock IMO, Day 1
You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.
Let $\mathbb{R}$ be the set of all real numbers. Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for any $x,y\in \mathbb{R}$, there holds \[f(x+f(y))+f(xy)=yf(x)+f(y)+f(f(x)).\]
Let $N>2^{5000}$ be a positive integer. Prove that if $1\leq a_1<\cdots<a_k<100$ are distinct positive integers then the number \[\prod_{i=1}^{k}\left(N^{a_i}+a_i\right)\]has at least $k$ distinct prime factors. Note. Results with $2^{5000}$ replaced by some other constant $N_0$ will be awarded points depending on the value of $N_0$. Proposed by Evan Chen
Mock IMO, Day 2
Let $u_1, u_2, \dots, u_{2019}$ be real numbers satisfying \[u_{1}+u_{2}+\cdots+u_{2019}=0 \quad \text { and } \quad u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1.\]Let $a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$ and $b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$. Prove that \[ a b \leqslant-\frac{1}{2019}. \]
Here sum is replaced by sum of the $2019$-th powers, and sum of squares is replaced by sum of the $2020$-th powers
Let $O$ be the center of the equilateral triangle $ABC$. Pick two points $P_1$ and $P_2$ other than $B$, $O$, $C$ on the circle $\odot(BOC)$ so that on this circle $B$, $P_1$, $P_2$, $O$, $C$ are placed in this order. Extensions of $BP_1$ and $CP_1$ intersects respectively with side $CA$ and $AB$ at points $R$ and $S$. Line $AP_1$ and $RS$ intersects at point $Q_1$. Analogously point $Q_2$ is defined. Let $\odot(OP_1Q_1)$ and $\odot(OP_2Q_2)$ meet again at point $U$ other than $O$. Prove that $2\,\angle Q_2UQ_1 + \angle Q_2OQ_1 = 360^\circ$. Remark. $\odot(XYZ)$ denotes the circumcircle of triangle $XYZ$.
There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. Czech Republic