Problem

Source: 2020 Taiwan TST

Tags: geometry proposed, geometry



Let $O$ be the center of the equilateral triangle $ABC$. Pick two points $P_1$ and $P_2$ other than $B$, $O$, $C$ on the circle $\odot(BOC)$ so that on this circle $B$, $P_1$, $P_2$, $O$, $C$ are placed in this order. Extensions of $BP_1$ and $CP_1$ intersects respectively with side $CA$ and $AB$ at points $R$ and $S$. Line $AP_1$ and $RS$ intersects at point $Q_1$. Analogously point $Q_2$ is defined. Let $\odot(OP_1Q_1)$ and $\odot(OP_2Q_2)$ meet again at point $U$ other than $O$. Prove that $2\,\angle Q_2UQ_1 + \angle Q_2OQ_1 = 360^\circ$. Remark. $\odot(XYZ)$ denotes the circumcircle of triangle $XYZ$.