Indonesia MO Shortlist - geometry

2008

g1.1

Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that cicumcircles of these three triangles are concurrent.

g2

Let $ABC$ be an isosceles triangle right at $C$ and $P$ any point on $CB$. Let also $Q$ be the midpoint of $AB$ and $R, S$ be the points on $AP$ such that $CR$ is perpendicular to $AP$ and $|AS|=|CR|$. Prove that the $|RS| = \sqrt2 |SQ|$.

g3

Given triangle $ABC$. A circle $\Gamma$ is tangent to the circumcircle of triangle $ABC$ at $A$ and tangent to $BC$ at $D$. Let $E$ be the intersection of circle $\Gamma$ and $AC$. Prove that $$R^2=OE^2+CD^2\left(1- \frac{BC^2}{AB^2+AC^2}\right)$$where $O$ is the center of the circumcircle of triangle $ABC$, with radius $R$.

g4

Given that two circles $\sigma_1$ and $\sigma_2$ internally tangent at $N$ so that $\sigma_2$ is inside $\sigma_1$. The points $Q$ and $R$ lies at $\sigma_1$ and $\sigma_2$, respectively, such that $N,R,Q$ are collinear. A line through $Q$ intersects $\sigma_2$ at $S$ and intersects $\sigma_1$ at $O$. The line through $N$ and $S$ intersects $\sigma_1$ at $P$. Prove that $$\frac{PQ^3}{PN^2} = \frac{PS \cdot RS}{NS}.$$

g5

Let $ABCD$ be quadrilateral inscribed in a circle. Let $M$ be the midpoint of the segment $BD$. If the tangents of the circle at $ B$, and at $D$ are also concurrent with the extension of $AC$, prove that $\angle AMD = \angle CMD$.

g6.7

Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to $ \frac{\pi (a^{2}+b^{2}+c^{2})(b+c-a)(c+a-b)(a+b-c)}{(a+b+c)^{3}}$ (hmm,, looks familiar, isn't it? )

g7

Given an isosceles trapezoid $ABCD$ with base $AB$. The diagonals $AC$ and $BD$ intersect at point $S$. Let $M$ the midpoint of $BC$ and the bisector of the angle $BSC$ intersect $BC$ at $N$. Prove that $\angle AMD = \angle AND$.

g8

Prove that there is only one triangle whose sides are consecutive natural numbers and one of the angles is twice the other angle.

g9

Given a triangle $ABC$, the points $D$, $E$, and $F$ lie on the sides $BC$, $CA$, and $AB$, respectively, are such that $$DC + CE = EA + AF = FB + BD.$$Prove that $$DE + EF + FD \ge \frac12 (AB + BC + CA).$$

g10

Given a triangle $ABC$ with $AB = AC$, angle $\angle A = 100^o$ and $BD$ bisector of angle $\angle B$. Prove that $$BC = BD + DA.$$

2009

g1

Given triangle $ABC$, $AL$ bisects angle $\angle BAC$ with $L$ on side $BC$. Lines $LR$ and $LS$ are parallel to $BA$ and $CA$ respectively, $R$ on side $AC$ and$ S$ on side $AB$, respectively. Through point $B$ draw a perpendicular on $AL$, intersecting $LR$ at $M$. If point $D$ is the midpoint of $BC$, prove that that the three points $A, M, D$ lie on a straight line.

g2.3

For every triangle $ ABC$, let $ D,E,F$ be a point located on segment $ BC,CA,AB$, respectively. Let $ P$ be the intersection of $ AD$ and $ EF$. Prove that: \[ \frac{AB}{AF}\times DC+\frac{AC}{AE}\times DB=\frac{AD}{AP}\times BC\]

g3

Given a quadrilateral $ABCD$ inscribed in circle $\Gamma$.From a point P outside $\Gamma$, draw tangents $PA$ and $PB$ with $A$ and $B$ as touspoints. The line $PC$ intersects $\Gamma$ at point $D$. Draw a line through $B$ parallel to $PA$, this line intersects $AC$ and $AD$ at points $E$ and $F$ respectively. Prove that $BE = BF$.

g4

Let $D, E, F$, be the touchpoints of the incircle in triangle $ABC$ with sides $BC, CA, AB$, respectively, . Also, let $AD$ and $EF$ intersect at $P$. Prove that $$\frac{AP}{AD} \ge 1 - \frac{BC}{AB + CA}$$.

g5

Two circles intersect at points $A$ and $B$. The line $\ell$ through A intersects the circles at $C$ and $D$, respectively. Let $M, N$ be the midpoints of arc $BC$ and arc $BD$. which does not contain $A$, and suppose that $K$ is the midpoint of the segment $CD$ . Prove that $\angle MKN=90^o$.

g6

Suppose the points $D, E, F$ lie on sides $BC, CA, AB$, respectively, so that $AD, BE, CF$ are the altitudes. Also, let $AD$ and $EF$ intersect at $P$. Prove that $$\frac{AP}{AD} \ge 1 - \frac{BC^2}{AB^2 + CA^2}$$

g7

Given a convex quadrilateral $ABCD$, such that $OA = \frac{OB \cdot OD}{OC + CD}$ where $O$ is the intersection of the two diagonals. The circumcircle of triangle $ABC$ intersects $BD$ at point $Q$. Prove that $CQ$ bisects $\angle ACD$

g8

Suppose the points $D, E, F$ lie on sides $BC, CA, AB$, respectively, so that $AD, BE, CF$ are angle bisectors. Define $P_1$, $P_2$, $P_3$ respectively as the intersection point of $AD$ with $EF$, $BE$ with $DF$, $CF$ with $DE$ respectively. Prove that $$\frac{AD}{AP_1}+\frac{BE}{BP_2}+\frac{CF}{CP_3} \ge 6$$

g9

Given triangle $ABC$. Let $A_1B_1$, $A_2B_2$,$ ...$, $A_{2008}B_{2008}$ be $2008$ lines parallel to $AB$ which divide triangle $ABC$ into $2009$ equal areas. Calculate the value of $$ \left\lfloor \frac{A_1B_1}{2A_2B_2} + \frac{A_1B_1}{2A_3B_3} + ... + \frac{A_1B_1}{2A_{2008}B_{2008}} \right\rfloor$$

g10

Given a triangle $ABC$ with incenter $I$ . It is known that $E_A$ is center of the ex-circle tangent to $BC$. Likewise, $E_B$ and $E_C$ are the centers of the ex-circles tangent to $AC$ and $AB$, respectively. Prove that $I$ is the orthocenter of the triangle $E_AE_BE_C$.

g11.8

Given an acute triangle $ ABC$. The incircle of triangle $ ABC$ touches $ BC,CA,AB$ respectively at $ D,E,F$. The angle bisector of $ \angle A$ cuts $ DE$ and $ DF$ respectively at $ K$ and $ L$. Suppose $ AA_1$ is one of the altitudes of triangle $ ABC$, and $ M$ be the midpoint of $ BC$. (a) Prove that $ BK$ and $ CL$ are perpendicular with the angle bisector of $ \angle BAC$. (b) Show that $ A_1KML$ is a cyclic quadrilateral.

g12

In triangle $ABC$, the incircle is tangent to $BC$ at $D$, to $AC$ at $E$, and to $AB$ at $F$. Prove that: $$\frac{CE-EA}{\sqrt{AB}}+\frac{AF-FB}{\sqrt{BC}} +\frac{BD-DC}{\sqrt{CA}} \ge \frac{BD-DC}{\sqrt{AB}} +\frac{CE-EA}{\sqrt{BC}} +\frac{AF-FB}{\sqrt{CA}}$$

2010

g1

In triangle $ABC$, let $D$ be the midpoint of $BC$, and $BE$, $CF$ are the altitudes. Prove that $DE$ and $DF$ are both tangents to the circumcircle of triangle $AEF$

g2

Given an acute triangle $ABC$. The inscribed circle of triangle $ABC$ is tangent to $AB$ and $AC$ at $X$ and $Y$ respectively. Let $CH$ be the altitude. The perpendicular bisector of the segment $CH$ intersects the line $XY$ at $Z$. Prove that $\angle BZC = 90^o.$

g3

Suppose $L_1$ is a circle with center $O$, and $L_2$ is a circle with center $O'$. The circles intersect at $ A$ and $ B$ such that $\angle OAO' = 90^o$. Suppose that point $X$ lies on the circumcircle of triangle $OAB$, but lies inside $L_2$. Let the extension of $OX$ intersect $L_1$ at $Y$ and $Z$. Let the extension of $O'X$ intersect $L_2$ at $W$ and $V$ . Prove that $\vartriangle XWZ$ is congruent with $\vartriangle XYV$.

g4.8

Given an acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$. Let $K$ be a point inside $ABC$ which is not $O$ nor $H$. Point $L$ and $M$ are located outside the triangle $ABC$ such that $AKCL$ and $AKBM$ are parallelogram. At last, let $BL$ and $CM$ intersects at $N$, and let $J$ be the midpoint of $HK$. Show that $KONJ$ is also a parallelogram. Raja Oktovin, Pekanbaru

g5

Given an arbitrary triangle $ABC$, with $\angle A = 60^o$ and $AC < AB$. A circle with diameter $BC$, intersects $AB$ and $AC$ at $F$ and $E$, respectively. Lines $BE$ and $CF$ intersect at $D$. Let $\Gamma$ be the circumcircle of $BCD$, where the center of $\Gamma$ is $O$. Circle $\Gamma$ intersects the line $AB$ and the extension of $AC$ at $M$ and $N$, respectively. $MN$ intersects $BC$ at $P$. Prove that points $A$, $P$, $O$ lie on the same line.

g6.2

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent. Fajar Yuliawan, Bandung

g7

In triangle $ABC$, find the smallest possible value of $$|(\cot A + \cot B)(\cot B +\cot C)(\cot C + \cot A)|$$

g8

Given an acute triangle $ABC$ and points $D$, $E$, $F$ on sides $BC$, $CA$ and $AB$, respectively. If the lines $DA$, $EB$ and $FC$ are the angle bisectors of triangle $DEF$, prove that the three lines are the altitudes of triangle $ABC$.

g9

Given two circles $\Gamma_1$ and $\Gamma_2$ which intersect at points $A$ and $B$. A line through $A$ intersects $\Gamma_1$ and $\Gamma_2$ at points $C$ and $D$, respectively. Let $M$ be the midpoint of arc $BC$ in $\Gamma_1$ ,which does not contains $A$, and $N$ is the midpoint of the arc $BD$ in $\Gamma_2$, which does not contain $A$. If $K$ is the midpoint of $CD$, prove that $\angle MKN = 90^o.$

g10

Given two circles with one of the centers of the circle is on the other circle. The two circles intersect at two points $C$ and $D$. The line through $D$ intersects the two circles again at $A$ and $ B$. Let $H$ be the midpoint of the arc $AC$ that does not contain $D$ and the segment $HD$ intersects circle that does not contain $H$ at point $E$. Show that $E$ is the center of the incircle of the triangle $ACD$.

g11

Given triangle $ABC$ and point $P$ on the circumcircle of triangle $ABC$. Suppose the line $CP$ intersects line $AB$ at point $E$ and line $BP$ intersect line $AC$ at point $F$. Suppose also the perpendicular bisector of $AB$ intersects $AC$ at point $K$ and the perpendicular bisector of $AC$ intersects $AB$ at point $J$. Prove that $$\left( \frac{CE}{BF}\right)^2= \frac{AJ \cdot JE }{ AK \cdot KF}$$

2014

g1

The inscribed circle of the $ABC$ triangle has center $I$ and touches to $BC$ at $X$. Suppose the $AI$ and $BC$ lines intersect at $L$, and $D$ is the reflection of $L$ wrt $X$. Points $E$ and $F$ respectively are the result of a reflection of $D$ wrt to lines $CI$ and $BI$ respectively. Show that quadrilateral $BCEF$ is cyclic .

g2.6

Let $ABC$ be a triangle. Suppose $D$ is on $BC$ such that $AD$ bisects $\angle BAC$. Suppose $M$ is on $AB$ such that $\angle MDA = \angle ABC$, and $N$ is on $AC$ such that $\angle NDA = \angle ACB$. If $AD$ and $MN$ intersect on $P$, prove that $AD^3 = AB \cdot AC \cdot AP$.

g3.3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

g4

Given an acute triangle $ABC$ with $AB <AC$. Points $P$ and $Q$ lie on the angle bisector of $\angle BAC$ so that $BP$ and $CQ$ are perpendicular on that angle bisector. Suppose that point $E, F$ lie respectively at sides $AB$ and $AC$ respectively, in such a way that $AEPF$ is a kite. Prove that the lines $BC, PF$, and $QE$ intersect at one point.

g5

Given a cyclic quadrilateral $ABCD$. Suppose $E, F, G, H$ are respectively the midpoint of the sides $AB, BC, CD, DA$. The line passing through $G$ and perpendicular on $AB$ intersects the line passing through $H$ and perpendicular on $BC$ at point $K$. Prove that $\angle EKF = \angle ABC$.

g6

Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

2015

g1

Given a cyclic quadrilateral $ABCD$ so that $AB = AD$ and $AB + BC <CD$. Prove that the angle $ABC$ is more than $120$ degrees.

g2

Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.

g3

Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.

g4

Given an isosceles triangle $ABC$ with $AB = AC$, suppose $D$ is the midpoint of the $AC$. The circumcircle of the $DBC$ triangle intersects the altitude from $A$ at point $E$ inside the triangle $ABC$, and the circumcircle of the triangle $AEB$ cuts the side $BD$ at point $F$. If $CF$ cuts $AE$ at point $G$, prove that $AE = EG$.

g5

Let $ABC$ be an acute triangle. Suppose that circle $\Gamma_1$ has it's center on the side $AC$ and is tangent to the sides $AB$ and $BC$, and circle $\Gamma_2$ has it's center on the side $AB$ and is tangent to the sides $AC$ and $BC$. The circles $\Gamma_1$ and $ \Gamma_2$ intersect at two points $P$ and $Q$. Show that if $A, P, Q$ are collinear, then $AB = AC$.

g6.6

Let $ABC$ be an acute angled triangle with circumcircle $O$. Line $AO$ intersects the circumcircle of triangle $ABC$ again at point $D$. Let $P$ be a point on the side $BC$. Line passing through $P$ perpendicular to $AP$ intersects lines $DB$ and $DC$ at $E$ and $F$ respectively . Line passing through $D$ perpendicular to $BC$ intersects $EF$ at point $Q$. Prove that $EQ = FQ$ if and only if $BP = CP$.

g7.3

Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.

g8

$ABC$ is an acute triangle with $AB> AC$. $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for $ \Gamma_C$. Let $D$ be the intersection $\Gamma_B$ and $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $ABC$. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.

2017

g1.1

$ABCD$ is a parallelogram. $g$ is a line passing $A$. Prove that the distance from $C$ to $g$ is either the sum or the difference of the distance from $B$ to $g$, and the distance from $D$ to $g$.

g2

It is known that two circles have centers at $P$ and $Q$. Prove that the intersection points of the two internal common tangents of the two circles with their two external common tangents lie on the same circle.

g3

In triangle $ABC$, points $P$ and $Q$ are projections of point $A$ onto the bisectors of angles $ABC$ and $ACB$, respectively. Prove that $PQ\parallel BC$.

g4

Inside the equilateral triangle $ABC$ lies the point $T$. Prove that $TA$, $TB$ and $TC$ are the lengths of the sides of a triangle.

g5

Given a circle $(O)$ with center $O$ and $P$ a point outside $(O)$. $A$ and $B$ are points on $(O)$ such that $PA$ and $PB$ are tangents to $(O)$. The line $\ell$ through $P$ intersects $(O)$ at points $C$ and $D$, respectively ($C$ lies between $P$ and $D$). Line $BF$ is parallel to line $PA$ and intersects line $AC$ and line $AD$ at $E$ and $F$, respectively. Prove that $BE = BF$.

g6.7

Let $ABCD$ be a parallelogram. $E$ and $F$ are on $BC, CD$ respectively such that the triangles $ABE$ and $BCF$ have the same area. Let $BD$ intersect $AE, AF$ at $M, N$ respectively. Prove there exists a triangle whose side lengths are $BM, MN, ND$.

g7

A semicircle $(O)$ is drawn with the center $O$, where $O$ lies on a line $\ell$. $C$ and $D$ lie on the circle $(O)$, and the tangent lines of $(O)$ at points $C$ and $D$ intersects the line $\ell$ at points $B$ and $A$, respectively, such that $O$ lies between points $B$ and $A$. Let $E$ be the intersection point between $AC$ and $BD$, and $F$ the point on $\ell$ so that $EF $ is perpendicular to line $\ell$. Prove that $EF$ bisects the angle $\angle CFD$.

g8

Given a circle centered at point $O$, with $AB$ as the diameter. Point $C$ lies on the extension of line $AB$ so that $B$ lies between $A$ and $C$, and the line through $C$ intersects the circle at points $D$ and $E$ (where $D$ lies between $C$ and $E$). $OF$ is the diameter of the circumcircle of triangle $OBD$, and the extension of the line $CF$ intersects the circumcircle of triangle $OBD$ at point $G$. Prove that the points $O, A, E, G$ lie on a circle.

g9

It is known that $ABCD$ is a parallelogram. The point $E$ is taken so that $BCED$ is a cyclic quadrilateral. Let $\ell$ be a line that passes through $A$, intersects the segment $DC$ at point $F$ and intersects the extension of the line $BC$ at $G$. Given $EF = EG = EC$. Prove that $\ell$ is the bisector of the angle $\angle BAD$.

g10

It is known that circle $\Gamma_1(O_1)$ has center at $O_1$, circle $\Gamma_2(O_2)$ has center at $O_2$, and both intersect at points $C$ and $D$. It is also known that points $P$ and $Q$ lie on circles $\Gamma_1(O_1)$ and $\Gamma_2(O_2)$, respectively. ). A line $\ell$ passes through point $D$ and intersects $\Gamma_1(O_1)$ and $\Gamma_2(O_2)$ at points $A$ and $B$, respectively. The lines $PD$ and $AC$ meet at point $M$, and the lines $QD$ and $BC$ meet at point $N$. Let $O$ be center outer circle of triangle $ABC$. Prove that $OD$ is perpendicular to $MN$ if and only if a circle can be found which passes through the points $P, Q, M$ and $N$.