Let $ABC$ be an isosceles triangle right at $C$ and $P$ any point on $CB$. Let also $Q$ be the midpoint of $AB$ and $R, S$ be the points on $AP$ such that $CR$ is perpendicular to $AP$ and $|AS|=|CR|$. Prove that the $|RS| = \sqrt2 |SQ|$.
Problem
Source: Indonesia INAMO Shortlist 2008 G2
Tags: isosceles, equal segments, geometry
GravitoelectromagnetismTM
13.12.2021 20:30
One of the bashier geo problems I have seen, but not too bad...
Let the distance from $C$ to $P$ be $a$, and let the $AC = BC = \frac{\sqrt{2}}{2} AB = l$.
We have $AP = \sqrt{a^2 + l^2}$, and since $CR$ is the altitude from $C$ it is by area relations $\frac{la}{\sqrt{a^2 + l^2}}$.
By Pythagorean again, $AR = \sqrt{l^2 - \frac{l^2 a^2}{l^2 + a^2}}$. Since $SA = CR$, we get
\begin{align*}
RS &= \sqrt{l^2 - \frac{l^2 a^2}{l^2 + a^2}} - \frac{la}{\sqrt{a^2 + l^2}} \\
&= \frac{1}{\sqrt{a^2 + l^2}} \sqrt{a^2 l^2 + l^4 - l^2 a^2} - \frac{la}{\sqrt{a^2 + l^2}} \\
&= \frac{l(l-a)}{\sqrt{l^2 + a^2}}
\end{align*}The first part is now done. Note that $\angle CAP = arctan(\frac{a}{l})$. Thus, we have $\angle BAP = 45^{\circ} - arctan(\frac{a}{l})$. Using the law of cosines,
\begin{align*}
SQ &= \sqrt{\frac{l^2}{2} + \frac{l^2 a^2}{a^2 + l^2} - 2 \frac{la}{\sqrt{l^2 + a^2}} \cdot l \frac{\sqrt{2}}{2} \cdot (sin(45^{\circ}) sin(\angle BAP) + cos(45^{\circ}) cos(\angle BAP))} \\
&= \sqrt{\frac{l^2}{2} + \frac{l^2 a^2}{a^2 + l^2} - 2 \frac{la}{\sqrt{l^2 + a^2}} \cdot l \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} (\frac{a + l}{\sqrt{a^2 + l^2}})} \\
&= \frac{1}{\sqrt{a^2 + l^2}} \sqrt{\frac{a^2 l^2}{2} + \frac{l^4}{2} + l^2 a^2 - l^2 a^2 - l^3 a} \\
&= \frac{l}{\sqrt{2} \sqrt{a^2 + l^2}} \sqrt{a^2 - 2al + l^2} \\
&= \frac{l (l-a)}{\sqrt{2} \sqrt{a^2 + l^2}} = \frac{1}{\sqrt{2}} RS
\end{align*}as desired. $\square$