2019 India Regional Mathematical Olympiad

1

Suppose $x$ is a non zero real number such that both $x^5$ and $20x+\frac{19}{x}$ are rational numbers. Prove that $x$ is a rational number.

2

Let $ABC$ be a triangle with circumcircle $\Omega$ and let $G$ be the centroid of triangle $ABC$. Extend $AG, BG$ and $CG$ to meet the circle $\Omega$ again in $A_1, B_1$ and $C_1$. Suppose $\angle BAC = \angle A_1 B_1 C_1, \angle ABC = \angle A_1 C_1 B_1$ and $ \angle ACB = B_1 A_1 C_1$. Prove that $ABC$ and $A_1 B_1 C_1$ are equilateral triangles.

3

Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that $$\frac{a}{a^2+b^3+c^3}+\frac{b}{b^2+a^3+c^3}+\frac{c}{c^2+a^3+b^3}\leq\frac{1}{5abc}$$

4

Consider the following $3\times 2$ array formed by using the numbers $1,2,3,4,5,6$, $$\begin{pmatrix} a_{11}& a_{12}\\a_{21}& a_{22}\\ a_{31}& a_{32}\end{pmatrix}=\begin{pmatrix}1& 6\\2& 5\\ 3& 4\end{pmatrix}.$$Observe that all row sums are equal, but the sum of the square of the squares is not the same for each row. Extend the above array to a $3\times k$ array $(a_{ij})_{3\times k}$ for a suitable $k$, adding more columns, using the numbers $7,8,9,\dots ,3k$ such that $$\sum_{j=1}^k a_{1j}=\sum_{j=1}^k a_{2j}=\sum_{j=1}^k a_{3j}~~\text{and}~~\sum_{j=1}^k (a_{1j})^2=\sum_{j=1}^k (a_{2j})^2=\sum_{j=1}^k (a_{3j})^2$$

5

In an acute angled triangle $ABC$, let $H$ be the orthocenter, and let $D,E,F$ be the feet of altitudes from $A,B,C$ to the opposite sides, respectively. Let $L,M,N$ be the midpoints of the segments $AH, EF, BC$ respectively. Let $X,Y$ be the feet of altitudes from $L,N$ on to the line $DF$ respectively. Prove that $XM$ is perpendicular to $MY$.

6

Suppose $91$ distinct positive integers greater than $1$ are given such that there are at least $456$ pairs among them which are relatively prime. Show that one can find four integers $a, b, c, d$ among them such that $\gcd(a,b)=\gcd(b,c)=\gcd(c,d)=\gcd(d,a)=1.$

Maharashtra and Goa

1

For each $n\in\mathbb{N}$ let $d_n$ denote the gcd of $n$ and $(2019-n)$. Find value of $d_1+d_2+\cdots d_{2018}+d_{2019}$

2

Given a circle $\tau$, let $P$ be a point in its interior, and let $l$ be a line through $P$. Construct with proof using ruler and compass, all circles which pass through $P$, are tangent to $\tau$ and whose center lies on line $l$.

3

Find all triples of non-negative real numbers $(a,b,c)$ which satisfy the following set of equations $$a^2+ab=c$$$$b^2+bc=a$$$$c^2+ca=b$$

4

Let $a_1,a_2,\cdots,a_6,a_7$ be seven positive integers. Let $S$ be the set of all numbers of the form $a_i^2+a_j^2$ where $1\leq i<j\leq 7$. Prove that there exist two elements of $S$ which have the same remainder on dividing by $36$.

5

There is a pack of 27 distinct cards, and each card has three values on it. The first value is a shape from $\{\Delta,\square,\odot\}$; the second value is a letter from $\{A,B,C\}$; and the third value is a number from $\{1,2,3\}$. In how many ways can we choose an unordered set of 3 cards from the pack, so that no two of the chosen cards have two matching values. For example we can chose $\{\Delta A1,\Delta B2,\odot C3\}$ But we cannot choose $\{\Delta A1,\square B2,\Delta C1\}$

6

Let $k$ be a positive real number. In the $X-Y$ coordinate plane, let $S$ be the set of all points of the form $(x,x^2+k)$ where $x\in\mathbb{R}$. Let $C$ be the set of all circles whose center lies in $S$, and which are tangent to $X$-axis. Find the minimum value of $k$ such that any two circles in $C$ have at least one point of intersection.