Suppose a grid with $2m$ rows and $2n$ columns is given, where $m$ and $n$ are positive integers. You may place one pawn on any square of this grid, except the bottom left one or the top right one. After placing the pawn, a snail wants to undertake a journey on the grid. Starting from the bottom left square, it wants to visit every square exactly once, except the one with the pawn on it, which the snail wants to avoid. Moreover, it wants to finish in the top right square. It can only move horizontally or vertically on the grid. On which squares can you put the pawn for the snail to be able to finish its journey?
2018 Dutch IMO TST
Day 1
Suppose a triangle $\vartriangle ABC$ with $\angle C = 90^o$ is given. Let $D$ be the midpoint of $AC$, and let $E$ be the foot of the altitude through $C$ on $BD$. Show that the tangent in $C$ of the circumcircle of $\vartriangle AEC$ is perpendicular to $AB$.
Let $n \ge 0$ be an integer. A sequence $a_0,a_1,a_2,...$ of integers is defined as follows: we have $a_0 = n$ and for $k \ge 1, a_k$ is the smallest integer greater than $a_{k-1}$ for which $a_k +a_{k-1}$ is the square of an integer. Prove that there are exactly $\lfloor \sqrt{2n}\rfloor$ positive integers that cannot be written in the form $a_k - a_{\ell}$ with $k > \ell\ge 0$.
Let $A$ be a set of functions $f : R\to R$. For all $f_1, f_2 \in A$ there exists a $f_3 \in A$ such that $f_1(f_2(y) - x)+ 2x = f_3(x + y)$ for all $x, y \in R$. Prove that for all $f \in A$, we have $f(x - f(x))= 0$ for all $x \in R$.
Day 2
(a) If $c(a^3+b^3) = a(b^3+c^3) = b(c^3+a^3)$ with $a, b, c$ positive real numbers, does $a = b = c$ necessarily hold? (b) If $a(a^3+b^3) = b(b^3+c^3) = c(c^3+a^3)$ with $a, b, c$ positive real numbers, does $a = b = c$ necessarily hold?
Find all positive integers $n$, for which there exists a positive integer $k$ such that for every positive divisor $d$ of $n$, the number $d - k$ is also a (not necessarily positive) divisor of $n$.
Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude through $A$. On $AD$, there are distinct points $E$ and $F$ such that $|AE| = |BE|$ and $|AF| =|CF|$. A point$ T \ne D$ satises $\angle BTE = \angle CTF = 90^o$. Show that $|TA|^2 =|TB| \cdot |TC|$.
In the classroom of at least four students the following holds: no matter which four of them take seats around a round table, there is always someone who either knows both of his neighbours, or does not know either of his neighbours. Prove that it is possible to divide the students into two groups such that in one of them, all students know one another, and in the other, none of the students know each other. (Note: if student A knows student B, then student B knows student A as well.)
Day 3
A set of lines in the plan is called nice i f every line in the set intersects an odd number of other lines in the set. Determine the smallest integer $k \ge 0$ having the following property: for each $2018$ distinct lines $\ell_1, \ell_2, ..., \ell_{2018}$ in the plane, there exist lines $\ell_{2018+1},\ell_{2018+2}, . . . , \ell_{2018+k}$ such that the lines $\ell_1, \ell_2, ..., \ell_{2018+k}$ are distinct and form a nice set.
Find all functions $f : R \to R$ such that $f(x^2)-f(y^2) \le (f(x)+y) (x-f(y))$ for all $x, y \in R$.
Determine all pairs $(a,b)$ of positive integers such that $(a+b)^3-2a^3-2b^3$ is a power of two.
In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.