Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for every positive integer $n$ the following is valid: If $d_1,d_2,\ldots,d_s$ are all the positive divisors of $n$, then $$f(d_1)f(d_2)\ldots f(d_s)=n.$$
2020 Hong Kong TST
August 24, 2019 - Test 1
Let D be an arbitrary point inside $\Delta ABC$. Let $\Gamma$ be the circumcircle of $\Delta BCD$. The external angle bisector of $\angle ABC$ meets $\Gamma$ again at $E$. The external angle bisector of $\angle ACB$ meets $\Gamma$ again at $F$. The line $EF$ meets the extension of $AB$ and $AC$ at $P$ and $Q$ respectively. Prove that the circumcircles of $\Delta BFP$ and $\Delta CEQ$ always pass through the same fixed point regardless of the position of $D$. (Assume all the labelled points are distinct.)
Given a list of integers $2^1+1, 2^2+1, \ldots, 2^{2019}+1$, Adam chooses two different integers from the list and computes their greatest common divisor. Find the sum of all possible values of this greatest common divisor.
Find the total number of primes $p<100$ such that $\lfloor (2+\sqrt{5})^p \rfloor-2^{p+1}$ is divisible by $p$. Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.
In $\Delta ABC$, let $D$ be a point on side $BC$. Suppose the incircle $\omega_1$ of $\Delta ABD$ touches sides $AB$ and $AD$ at $E,F$ respectively, and the incircle $\omega_2$ of $\Delta ACD$ touches sides $AD$ and $AC$ at $F,G$ respectively. Suppose the segment $EG$ intersects $\omega_1$ and $\omega_2$ again at $P$ and $Q$ respectively. Show that line $AD$, tangent of $\omega_1$ at $P$ and tangent of $\omega_2$ at $Q$ are concurrent.
For a sequence with some ones and zeros, we count the number of continuous runs of equal digits in it. (For example the sequence $011001010$ has $7$ continuous runs: $0,11,00,1,0,1,0$.) Find the sum of the number of all continuous runs for all possible sequences with $2019$ ones and $2019$ zeros.
October 26, 2019 - Test 2
Let $\Delta ABC$ be an acute triangle with incenter $I$ and orthocenter $H$. $AI$ meets the circumcircle of $\Delta ABC$ again at $M$. Suppose the length $IM$ is exactly the circumradius of $\Delta ABC$. Show that $AH\geq AI$.
Suppose there are $2019$ distinct points in a plane and the distances between pairs of them attain $k$ different values. Prove that $k$ is at least $44$.
Two circles $\Gamma$ and $\Omega$ intersect at two distinct points $A$ and $B$. Let $P$ be a point on $\Gamma$. The tangent at $P$ to $\Gamma$ meets $\Omega$ at the points $C$ and $D$, where $D$ lies between $P$ and $C$, and $ABCD$ is a convex quadrilateral. The lines $CA$ and $CB$ meet $\Gamma$ again at $E$ and $F$ respectively. The lines $DA$ and $DB$ meet $\Gamma$ again at $S$ and $T$ respectively. Suppose the points $P,E,S,F,B,T,A$ lie on $\Gamma$ in this order. Prove that $PC,ET,SF$ are parallel.
Find all real-valued functions $f$ defined on the set of real numbers such that $$f(f(x)+y)+f(x+f(y))=2f(xf(y))$$for any real numbers $x$ and $y$.