Nina and Meir are walking on a $3$ km path towards grandma's house. They start walking at the same time from the same point. Meir's speed is $4$ km/h and Nina's speed is $3$ km/h. Along the path there are several benches. Whenever Nina or Meir reaches a bench, they sit on it for some time and eat a cookie. Nina always takes $t$ minutes to eat a cookie, and Meir always takes $2t$ minutes to eat a cookie, where $t$ is a positive integer. It turns out that Nina and Meir reached grandma's house at the same time. How many benches were there? Find all of the options.
2016 Israel National Olympiad
We are given a cone with height 6, whose base is a circle with radius $\sqrt{2}$. Inside the cone, there is an inscribed cube: Its bottom face on the base of the cone, and all of its top vertices lie on the cone. What is the length of the cube's edge?
Denote by $S(n)$ the sum of digits of $n$. Given a positive integer $N$, we consider the following process: We take the sum of digits $S(N)$, then take its sum of digits $S(S(N))$, then its sum of digits $S(S(S(N)))$... We continue this until we are left with a one-digit number. We call the number of times we had to activate $S(\cdot)$ the depth of $N$. For example, the depth of 49 is 2, since $S(49)=13\rightarrow S(13)=4$, and the depth of 45 is 1, since $S(45)=9$. Prove that every positive integer $N$ has a finite depth, that is, at some point of the process we get a one-digit number. Define $x(n)$ to be the minimal positive integer with depth $n$. Find the residue of $x(5776)\mod 6$. Find the residue of $x(5776)-x(5708)\mod 2016$.
In the beginning, there is a circle with three points on it. The points are colored (clockwise): Green, blue, red. Jonathan may perform the following actions, as many times as he wants, in any order: Choose two adjacent points with different colors, and add a point between them with one of the two colors only. Choose two adjacent points with the same color, and add a point between them with any of the three colors. Choose three adjacent points, at least two of them having the same color, and delete the middle point. Can Jonathan reach a state where only three points remain on the circle, colored (clockwise): Blue, green, red?
The Fibonacci sequence $F_n$ is defined by $F_1=F_2=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ for all integers $n\geq3$. Let $m,n\geq1$ be integers. Find the minimal degree $d$ for which there exists a polynomial $f(x)=a_dx^d+a_{d-1}x^{d-1}+\dots+a_1x+a_0$, which satisfies $f(k)=F_{m+k}$ for all $k=0,1,...,n$.
Points $A_1,A_2,A_3,...,A_{12}$ are the vertices of a regular polygon in that order. The 12 diagonals $A_1A_6,A_2A_7,A_3A_8,...,A_{11}A_4,A_{12}A_5$ are marked, as in the picture below. Let $X$ be some point in the plane. From $X$, we draw perpendicular lines to all 12 marked diagonals. Let $B_1,B_2,B_3,...,B_{12}$ be the feet of the perpendiculars, so that $B_1$ lies on $A_1A_6$, $B_2$ lies on $A_2A_7$ and so on. Evaluate the ratio $\frac{XA_1+XA_2+\dots+XA_{12}}{B_1B_6+B_2B_7+\dots+B_{12}B_5}$.
Find all functions $f:\mathbb{Z}\rightarrow\mathbb{C}$ such that $f(x(2y+1))=f(x(y+1))+f(x)f(y)$ holds for any two integers $x,y$.