2018 Oral Moscow Geometry Olympiad

grades 8-9

1

Two parallelograms are arranged so as it shown on the picture. Prove that the diagonal of the one parallelogram passes through the intersection point of the diagonals of the second.

2

Bisectors of angle $C$ and externalangle $A$ of trapezoid $ABCD$ with bases $BC$ and $AD$ intersect at point $M$, and the bisector of angle $B$ and external angle $D$ intersect at point $N$. Prove that the midpoint of the segment $MN$ is equidistant from the lines $AB$ and $CD$.

3

On the extensions of sides $CA$ and $AB$ of triangle $ABC$ beyond points $A$ and $B$, respectively, the segments $AE = BC$ and $BF = AC$ are drawn. A circle is tangent to segment $BF$ at point $N$, side $BC$ and the extension of side $AC$ beyond point $C$. Point $M$ is the midpoint of segment $EF$. Prove that the line $MN$ is parallel to the bisector of angle $A$.

4

Given a triangle $ABC$ ($AB> AC$) and a circle circumscribed around it. Construct with a compass and a ruler the midpoint of the arc $BC$ (not containing vertex $A$), with no more than two lines (straight or circles).

5

The circle circumscribed about an acute triangle $ABC$ and the vertex $C$ are fixed. Orthocenter $H$ moves in a circle with center at point $C$. Find the locus of the midpoints of the segments connecting the feet of altitudes drawn from vertices $A$ and $B$.

6

Cut each of the equilateral triangles with sides $2$ and $3$ into three parts and construct an equilateral triangle from all received parts.

grades 9-10

1

In a right triangle $ABC$ with a right angle $C$, let $AK$ and $BN$ be the angle bisectors. Let $D,E$ be the projections of $C$ on $AK, BN$ respectively. Prove that the length of the segment $DE$ is equal to the radius of the inscribed circle.

2

The diagonals of the trapezoid $ABCD$ are perpendicular ($AD//BC, AD>BC$) . Point $M$ is the midpoint of the side of $AB$, the point $N$ is symmetric of the center of the circumscribed circle of the triangle $ABD$ wrt $AD$. Prove that $\angle CMN = 90^o$. (A. Mudgal, India)

3

A circle is fixed, point $A$ is on it and point $K$ outside the circle. The secant passing through $K$ intersects circle at points $P$ and $Q$. Prove that the orthocenters of the triangle $APQ$ lie on a fixed circle.

4

On the side $AB$ of the triangle $ABC$, point $M$ is selected. In triangle $ACM$ point $I_1$ is the center of the inscribed circle, $J_1$ is the center of excircle wrt side $CM$. In the triangle $BCM$ point $I_2$ is the center of the inscribed circle, $J_2$ is the center of excircle wrt side $CM$. Prove that the line passing through the midpoints of the segments $I_1I_2$ and $J_1J_2$ is perpendicular to $AB$.

5

Two ants sit on the surface of a tetrahedron. Prove that they can meet by breaking the sum of a distance not exceeding the diameter of a circle is circumscribed around the edge of a tetrahedron.

6

Let $ABC$ be an acute-angled triangle with circumcenter $O$. The circumcircle of $\triangle{BOC}$ meets the lines $AB, AC$ at points $A_1, A_2$, respectively. Let $\omega_{A}$ be the circumcircle of triangle $AA_1A_2$. Define $\omega_B$ and $\omega_C$ analogously. Prove that the circles $\omega_A, \omega_B, \omega_C$ concur on $\odot(ABC)$.