2013 Danube Mathematical Competition

Junior

1

Determine the natural numbers $n\ge 2$ for which exist $x_1,x_2,...,x_n \in R^*$, such that $$x_1+x_2+...+x_n=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}=0$$

2

Consider $64$ distinct natural numbers, at most equal to $2012$. Show that it is possible to choose four of them, denoted as $a,b,c,d$ such that $ a+b-c-d$ to be a multiple of $2013$

3

Determine the natural numbers $m,n$ such as $85^m-n^4=4$

4

Let $ABCD$ be a rectangle with $AB \ne BC$ and the center the point $O$. Perpendicular from $O$ on $BD$ intersects lines $AB$ and $BC$ in points $E$ and $F$ respectively. Points $M$ and $N$ are midpoints of segments $[CD]$ and $[AD]$ respectively. Prove that $FM \perp EN$ .

Senior

1

Given six points on a circle, $A, a, B, b, C, c$, show that the Pascal lines of the hexagrams $AaBbCc, AbBcCa, AcBaCb$ are concurrent.

2

Let $a, b, c, n$ be four integers, where n$\ge 2$, and let $p$ be a prime dividing both $a^2+ab+b^2$ and $a^n+b^n+c^n$, but not $a+b+c$. for instance, $a \equiv b \equiv -1 (mod \,\, 3), c \equiv 1 (mod \,\, 3), n$ a positive even integer, and $p = 3$ or $a = 4, b = 7, c = -13, n = 5$, and $p = 31$ satisfy these conditions. Show that $n$ and $p - 1$ are not coprime.

3

Show that, for every integer $r \ge 2$, there exists an $r$-chromatic simple graph (no loops, nor multiple edges) which has no cycle of less than $6$ edges

4

Show that there exists a proper non-empty subset $S$ of the set of real numbers such that, for every real number $x$, the set $\{nx + S : n \in N\}$ is finite, where $nx + S =\{nx + s : s \in S\}$