a) Exist $a, b, c, \in N$, such that the numbers $ab+1,bc+1$ and $ca+1$ are simultaneously even perfect squares ? b) Show that there is an infinity of natural numbers (distinct two by two) $a, b, c$ and $d$, so that the numbers $ab+1,bc+1, cd+1$ and $da+1$ are simultaneously perfect squares.
2012 Danube Mathematical Competition
Junior
Consider the natural number prime $p, p> 5$. From the decimal number $\frac1p$, randomly remove $2012$ numbers, after the comma. Show that the remaining number can be represented as $\frac{a}{b}$ , where $a$ and $b$ are coprime numbers , and $b$ is multiple of $p$.
Let $ABC$ be a triangle with $\angle BAC = 90^o$. Angle bisector of the $\angle CBA$ intersects the segment $(AB)$ at point $E$. If there exists $D \in (CE)$ so that $\angle DAC = \angle BDE =x^o$ , calculate $x$.
Let $A$ be a subset with seven elements of the set $\{1,2,3, ...,26\}$. Show that there are two distinct elements of $A$, having the same sum of their elements.
Senior
Given a positive integer $n$, determine the maximum number of lattice points in the plane a square of side length $n +\frac{1}{2n+1}$ may cover.
Let $ABC$ be an acute triangle and let $A_1$, $B_1$, $C_1$ be points on the sides $BC, CA$ and $AB$, respectively. Show that the triangles $ABC$ and $A_1B_1C_1$ are similar ($\angle A = \angle A_1, \angle B = \angle B_1,\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle $ABC$ coincide.
Let $p$ and $q, p < q,$ be two primes such that $1 + p + p^2+...+p^m$ is a power of $q$ for some positive integer $m$, and $1 + q + q^2+...+q^n$ is a power of $p$ for some positive integer $n$. Show that $p = 2$ and $q = 2^t-1$ where $t$ is prime.
Given a positive integer $n$, show that the set $\{1,2,...,n\}$ can be partitioned into $m$ sets, each with the same sum, if and only if m is a divisor of $\frac{n(n + 1)}{2}$ which does not exceed $\frac{n + 1}{2}$.