2019 Yasinsky Geometry Olympiad

grades VIII-IX

p1

The sports ground has the shape of a rectangle $ABCD$, with the angle between the diagonals $AC$ and $BD$ is equal to $60^o$ and $AB >BC$. The trainer instructed Andriyka to go first $10$ times on the route $A-C-B-D-A$, and then $15$ more times along the route $A-D-A$. Andriyka performed the task, moving a total of $4.5$ km. What is the distance $AC$?

p2

An isosceles triangle $ABC$ ($AB = AC$) with an incircle of radius $r$ is given. We know that the point $M$ of the intersection of the medians of the triangle $ABC$ lies on this circle. Find the distance from the vertex $A$ to the point of intersection of the bisectrix of the triangle $ABC$. (Grigory Filippovsky)

p3

In the quadrilateral $ABCD$, the angles $B$ and $D$ are right . The diagonal $AC$ forms with the side $AB$ the angle of $40^o$, as well with side $AD$ an angle of $30^o$. Find the acute angle between the diagonals $AC$ and $BD$.

p4

Let $ABC$ be a triangle, $O$ is the center of the circle circumscribed around it, $AD$ the diameter of this circle. It is known that the lines $CO$ and $DB$ are parallel. Prove that the triangle $ABC$ is isosceles. (Andrey Mostovy)

p5

In the triangle $ABC$, $\angle ABC = \angle ACB = 78^o$. On the sides $AB$ and $AC$, respectively, the points $D$ and $E$ are chosen such that $\angle BCD = 24^o$, $\angle CBE = 51^o$. Find the measure of angle $\angle BED$.

p6

The board features a triangle $ABC$, its center of the circle circumscribed is the point $O$, the midpoint of the side $BC$ is the point $F$, and also some point $K$ on side $AC$ (see fig.). Master knowing that $\angle BAC$ of this triangle is equal to the sharp angle $\alpha$ has separately drawn an angle equal to $\alpha$. After this teacher wiped the board, leaving only the points $O, F, K$ and the angle $\alpha$. Is it possible with a compass and a ruler to construct the triangle $ABC$ ? Justify the answer. (Grigory Filippovsky)

grades VIII-IX advanced

p1

It is known that in the triangle $ABC$ the distance from the intersection point of the angle bisector to each of the vertices of the triangle does not exceed the diameter of the circle inscribed in this triangle. Find the angles of the triangle $ABC$. (Grigory Filippovsky)

p2

A scalene triangle $ABC$ is given. It is known that $I$ is the center of the inscribed circle in this triangle, $D, E, F$ points are the touchpoints of this circle with the sides $AB, BC, CA$, respectively. Let $P$ be the intersection point of lines $DE$ and $AI$. Prove that $CP \perp AI$. (Vtalsh Winds)

p3

Let $ABCD$ be an inscribed quadrilateral whose diagonals are connected internally. are perpendicular to each other and intersect at the point $P$. Prove that the line connecting the midpoints of the opposite sides of the quadrilateral $ABCD$ bisects the lines $OP$ ($O$ is the center of the circle circumscribed around quadrilateral $ABCD$). (Alexander Dunyak)

p4

In the triangle $ABC$, the side $BC$ is equal to $a$. Point $F$ is midpoint of $AB$, $I$ is the point of intersection of the bisectors of triangle $ABC$. It turned out that $\angle AIF = \angle ACB$. Find the perimeter of the triangle $ABC$. (Grigory Filippovsky)

p5

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2 <r_a$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$, $r_a$ is the radius of an exscribed circle that touches the sides of $BC$). (Mykola Moroz)

p6

In an acute triangle $ABC$ , the bisector of angle $\angle A$ intersects the circumscribed circle of the triangle $ABC$ at the point $W$. From point $W$ , a parallel is drawn to the side $AB$, which intersects this circle at the point $F \ne W$. Describe the construction of the triangle $ABC$, if given are the segments $FA$ , $FW$ and $\angle FAC$. (Andrey Mostovy)

grades X-XI

p1

A circle with center at the origin and radius $5$ intersects the abscissa in points $A$ and $B$. Let $P$ a point lying on the line $x = 11$, and the point $Q$ is the intersection point of $AP$ with this circle. We know what is the $Q$ point is the midpoint of the $AP$. Find the coordinates of the point $P$.

p2

Given the equilateral triangle $ABC$. It is known that the radius of the inscribed circle is in this triangle is equal to $1$. The rectangle $ABDE$ is such that point $C$ belongs to its side $DE$. Find the radius of the circle circumscribed around the rectangle $ABDE$.

p3

Let $ABCDEF$ be the regular hexagon. It is known that the area of the triangle $ACD$ is equal to $8$. Find the hexagonal area of $ABCDEF$.

p4

Find the angles of the cyclic quadrilateral if you know that each of its diagonals is a bisector of one angle and a trisector of the opposite one (the trisector of the angle is one of the two rays that lie in the interior of the angle and divide it into three equal parts). (Vyacheslav Yasinsky)

p5

On the sides of the right triangle, outside are constructed regular nonagons, which are constructed on one of the catheti and on the hypotenuse, with areas equal to $1602$ $cm^2$ and $2019$ $cm^2$, respectively. What is the area of the nonagon that is constructed on the other cathetus of this triangle? (Vladislav Kirilyuk)

p6

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$). (Mykola Moroz)

grades X-XI advanced

p1

The circle $x^2 + y^2 = 25$ intersects the abscissa in points $A$ and $B$. Let $P$ be a point that lies on the line $x = 11$, $C$ is the intersection point of this line with the $Ox$ axis, and the point $Q$ is the intersection point of $AP$ with the given circle. It turned out that the area of the triangle $AQB$ is four times smaller than the area of the triangle $APC$. Find the coordinates of $Q$.

p2

The base of the quadrilateral pyramid $SABCD$ lies the $ABCD$ rectangle with the sides $AB = 1$ and $AD = 10$. The edge $SA$ of the pyramid is perpendicular to the base, $SA = 4$. On the edge of $AD$, find a point $M$ such that the perimeter of the triangle of $SMC$ was minimal.

p3

Two circles $\omega_1$ and $\omega_2$ are tangent externally at the point $P$. Through the point $A$ of the circle $\omega_1$ is drawn a tangent to this circle, which intersects the circle $\omega_2$ at points $B$ and $C$ (see figure). Line $CP$ intersects again the circle $\omega_1$ to $D$. Prove that the $PA$ is a bisector of the angle $DPB$.

same as grades VIII-IX p4 - p4

p5

In a right triangle $ABC$ with a hypotenuse $AB$, the angle $A$ is greater than the angle $B$. Point $N$ lies on the hypotenuse $AB$ , such that $BN = AC$. Construct this triangle $ABC$ given the point $N$, point $F$ on the side $AC$ and a straight line $\ell$ containing the bisector of the angle $A$ of the triangle $ABC$. (Grigory Filippovsky)

p6

The $ABC$ triangle is given, point $I_a$ is the center of an exscribed circle touching the side $BC$ , the point $M$ is the midpoint of the side $BC$, the point $W$ is the intersection point of the bisector of the angle $A$ of the triangle $ABC$ with the circumscribed circle around him. Prove that the area of the triangle $I_aBC$ is calculated by the formula $S_{ (I_aBC)} = MW \cdot p$, where $p$ is the semiperimeter of the triangle $ABC$. (Mykola Moroz)