2014 Indonesia MO Shortlist

Algebra

A1

Let $a, b$ be positive real numbers such that there exist infinite number of natural numbers $k$ such that $\lfloor a^k \rfloor + \lfloor b^k \rfloor = \lfloor a \rfloor ^k + \lfloor b \rfloor ^k$ . Prove that $\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor = \lfloor a \rfloor ^{2014} + \lfloor b \rfloor ^{2014}$

A2

A sequence of positive integers $a_1, a_2, \ldots$ satisfies $a_k + a_l = a_m + a_n$ for all positive integers $k,l,m,n$ satisfying $kl = mn$. Prove that if $p$ divides $q$ then $a_p \le a_q$.

A3

Prove for each positive real number $x, y, z$, $$\frac{x^2y}{x+2y}+\frac{y^2z}{y+2z}+\frac{z^2x}{z+2x}<\frac{(x+y+z)^2}{8}$$

A4

Prove that for every real positive number $a, b, c$ with $1 \le a, b, c \le 8$ the inequality $$\frac{a+b+c}{5}\le \sqrt[3]{abc}$$

A5

Determine the largest natural number $m$ such that for each non negative real numbers $a_1 \ge a_2 \ge ... \ge a_{2014} \ge 0$ , it is true that $$\frac{a_1+a_2+...+a_m}{m}\ge \sqrt{\frac{a_1^2+a_2^2+...+a_{2014}^2}{2014}}$$

A6

Determine all polynomials with integral coefficients $P(x)$ such that if $a,b,c$ are the sides of a right-angled triangle, then $P(a), P(b), P(c)$ are also the sides of a right-angled triangle. (Sides of a triangle are necessarily positive. Note that it's not necessary for the order of sides to be preserved; if $c$ is the hypotenuse of the first triangle, it's not necessary that $P(c)$ is the hypotenuse of the second triangle, and similar with the others.)

Combinatorics

C1

Is it possible to fill a $3 \times 3$ grid with each of the numbers $1,2,\ldots,9$ once each such that the sum of any two numbers sharing a side is prime?

C2

Show that the smallest number of colors that is needed for coloring numbers $1, 2,..., 2013$ so that for every two number $a, b$ which is the same color, $ab$ is not a multiple of $2014$, is $3$ colors.

C3

Let $n$ be a natural number. Given a chessboard sized $m \times n$. The sides of the small squares of chessboard are not on the perimeter of the chessboard will be colored so that each small square has exactly two sides colored. Prove that a coloring like that is possible if and only if $m \cdot n$ is even.

C4

Suppose that $k,m,n$ are positive integers with $k \le n$. Prove that: \[\sum_{r=0}^m \dfrac{k \binom{m}{r} \binom{n}{k}}{(r+k) \binom{m+n}{r+k}} = 1\]

C5

Determine all pairs of natural numbers $(m, r)$ with $2014 \ge m \ge r \ge 1$ that fulfill $\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r} $

C6

Determine all natural numbers $n$ so that numbers $1, 2,... , n$ can be placed on the circumference of a circle and for each natural number $s$ with $1\le s \le \frac12n(n+1)$ , there is a circular arc which has the sum of all numbers in that arc to be $s$.

Geometry

G1

The inscribed circle of the $ABC$ triangle has center $I$ and touches to $BC$ at $X$. Suppose the $AI$ and $BC$ lines intersect at $L$, and $D$ is the reflection of $L$ wrt $X$. Points $E$ and $F$ respectively are the result of a reflection of $D$ wrt to lines $CI$ and $BI$ respectively. Show that quadrilateral $BCEF$ is cyclic .

G2

Let $ABC$ be a triangle. Suppose $D$ is on $BC$ such that $AD$ bisects $\angle BAC$. Suppose $M$ is on $AB$ such that $\angle MDA = \angle ABC$, and $N$ is on $AC$ such that $\angle NDA = \angle ACB$. If $AD$ and $MN$ intersect on $P$, prove that $AD^3 = AB \cdot AC \cdot AP$.

G3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

G4

Given an acute triangle $ABC$ with $AB <AC$. Points $P$ and $Q$ lie on the angle bisector of $\angle BAC$ so that $BP$ and $CQ$ are perpendicular on that angle bisector. Suppose that point $E, F$ lie respectively at sides $AB$ and $AC$ respectively, in such a way that $AEPF$ is a kite. Prove that the lines $BC, PF$, and $QE$ intersect at one point.

G5

Given a cyclic quadrilateral $ABCD$. Suppose $E, F, G, H$ are respectively the midpoint of the sides $AB, BC, CD, DA$. The line passing through $G$ and perpendicular on $AB$ intersects the line passing through $H$ and perpendicular on $BC$ at point $K$. Prove that $\angle EKF = \angle ABC$.

G6

Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

Number Theory

N1

(a) Let $k$ be an natural number so that the equation $ab + (a + 1) (b + 1) = 2^k$ does not have a positive integer solution $(a, b)$. Show that $k + 1$ is a prime number. (b) Show that there are natural numbers $k$ so that $k + 1$ is prime numbers and equation $ab + (a + 1) (b + 1) = 2^k$ has a positive integer solution $(a, b)$.

N2

Suppose that $a, b, c, k$ are natural numbers with $a, b, c \ge 3$ which fulfill the equation $abc = k^2 + 1$. Show that at least one between $a - 1, b - 1, c -1$ is composite number.

N3

Find all pairs of natural numbers $(a, b)$ that fulfill $a^b=(a+b)^a$.

N4

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

N5

Prove that we can give a color to each of the numbers $1,2,3,...,2013$ with seven distinct colors (all colors are necessarily used) such that for any distinct numbers $a,b,c$ of the same color, then $2014\nmid abc$ and the remainder when $abc$ is divided by $2014$ is of the same color as $a,b,c$.

N6

A positive integer is called beautiful if it can be represented in the form $\dfrac{x^2+y^2}{x+y}$ for two distinct positive integers $x,y$. A positive integer that is not beautiful is ugly. a) Prove that $2014$ is a product of a beautiful number and an ugly number. b) Prove that the product of two ugly numbers is also ugly.