Find all the pairs of real numbers $(x,y)$ that are solutions of the system: $(x^{2}+y^{2})^{2}-xy(x+y)^{2}=19 $ $| x - y | = 1$
2014 Greece JBMO TST
Let $ABCD$ be an inscribed quadrilateral in a circle $c(O,R)$ (of circle $O$ and radius $R$). With centers the vertices $A,B,C,D$, we consider the circles $C_{A},C_{B},C_{C},C_{D}$ respectively, that do not intersect to each other . Circle $C_{A}$ intersects the sides of the quadrilateral at points $A_{1} , A_{2}$ , circle $C_{B}$ intersects the sides of the quadrilateral at points $B_{1} , B_{2}$ , circle $C_{C}$ at points $C_{1} , C_{2}$ and circle $C_{D}$ at points $C_{1} , C_{2}$ . Prove that the quadrilateral defined by lines $A_{1}A_{2} , B_{1}B_{2} , C_{1}C_{2} , D_{1}D_{2}$ is cyclic.
Give are the integers $a_{1}=11 , a_{2}=1111, a_{3}=111111, ... , a_{n}= 1111...111$( with $2n$ digits) with $n > 8$ . Let $q_{i}= \frac{a_{i}}{11} , i= 1,2,3, ... , n$ the remainder of the division of $a_{i}$ by$ 11$ . Prove that the sum of nine consecutive quotients: $s_{i}=q_{i}+q_{i+1}+q_{i+2}+ ... +q_{i+8}$ is a multiple of $9$ for any $i= 1,2,3, ... , (n-8)$
Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when: a) $n=2014$ b) $n=2015 $ c) $n=2018$