2016 Greece JBMO TST

1

a) Prove that, for any real $x>0$, it is true that $x^3-3x\ge -2$ . b) Prove that, for any real $x,y,z>0$, it is true that $$\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}+2\left(\frac{y}{xz}+\frac{z}{xy}+\frac{x}{yz} \right)\ge 9$$. When we have equality ?

2

Let ${c\equiv c\left(O, R\right)}$ be a circle with center ${O}$ and radius ${R}$ and ${A, B}$ be two points on it, not belonging to the same diameter. The bisector of angle${\angle{ABO}}$ intersects the circle ${c}$ at point ${C}$, the circumcircle of the triangle $AOB$ , say ${c_1}$ at point ${K}$ and the circumcircle of the triangle $AOC$ , say ${{c}_{2}}$ at point ${L}$. Prove that point ${K}$ is the circumcircle of the triangle $AOC$ and that point ${L}$ is the incenter of the triangle $AOB$. Evangelos Psychas (Greece)

3

Positive integer $n$ is such that number $n^2-9$ has exactly $6$ positive divisors. Prove that GCD $(n-3, n+3)=1$

4

Vaggelis has a box that contains $2015$ white and $2015$ black balls. In every step, he follows the procedure below: He choses randomly two balls from the box. If they are both blacks, he paints one white and he keeps it in the box, and throw the other one out of the box. If they are both white, he keeps one in the box and throws the other out. If they are one white and one black, he throws the white out, and keeps the black in the box. He continues this procedure, until three balls remain in the box. He then looks inside and he sees that there are balls of both colors. How many white balls does he see then, and how many black?