2018 Greece JBMO TST

1

Let $a,b,c,d$ be positive real numbers such that $a^2+b^2+c^2+d^2=4$. Prove that exist two of $a,b,c,d$ with sum less or equal to $2$.

2

Let $ABC$ be an acute triangle with $AB<AC<BC, c$ it's circumscribed circle and $D,E$ be the midpoints of $AB,AC$ respectively. With diameters the sides $AB,AC$, we draw semicircles, outer of the triangle, which are intersected by line $D$ at points $M$ and $N$ respectively. Lines $MB$ and $NC$ intersect the circumscribed circle at points $T,S$ respectively. Lines $MB$ and $NC$ intersect at point $H$. Prove that: a) point $H$ lies on the circumcircle of triangle $AMN$ b) lines $AH$ and $TS$ are perpedicular and their intersection, let it be $Z$, is the circimcenter of triangle $AMN$

3

$12$ friends play a tennis tournament, where each plays only one game with any of the other eleven. Winner gets one points. Loser getos zero points, and there is no draw. Final points of the participants are $B_1, B_2, ..., B_{12}$. Find the largest possible value of the sum $\Sigma_3=B_1^3+B_2^3+ ... + B_{12}^3$ .

4

Find all positive integers $x,y,z$ with $z$ odd, which satisfy the equation: $$2018^x=100^y + 1918^z$$