In an acute-angled triangle $ABC$, point $M$ is the midpoint of side $BC$ and the centers of the $M$- excircles of triangles $AMB$ and $AMC$ are $D$ and $E$, respectively. The circumcircle of triangle $ABD$ intersects line $BC$ at points $B$ and $F$. The circumcircle of triangle $ACE$ intersects line $BC$ at points $C$ and $G$. Prove that $BF\hspace{0.25mm} = \hspace{0.25mm} CG$ .
2019 Macedonia National Olympiad
Let $n$ be a positive integer. If $r\hspace{0.25mm} \equiv \hspace{1mm} n\hspace{1mm} (mod\hspace{1mm} 2)$ and $r\hspace{0.10mm} \in \hspace{0.10mm} \{ 0,\hspace{0.10mm} 1 \} $, find the number of integer solutions to the system of equations $\left\{\begin{array}{l}x+y+z = r \\ \mid x \mid + \mid y \mid + \mid z \mid = n \end{array}\right.$
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
Determine all functions $f: \mathbb {N} \to \mathbb {N}$ such that $n!\hspace{1mm} +\hspace{1mm} f(m)!\hspace{1mm} |\hspace{1mm} f(n)!\hspace{1mm} +\hspace{1mm} f(m!)$, for all $m$, $n$ $\in$ $\mathbb{N}$.
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )