Show that there exists a $10 \times 10$ table of distinct natural numbers such that if $R_i$ is equal to the multiplication of numbers of row $i$ and $S_i$ is equal to multiplication of numbers of column $i$, then numbers $R_1$, $R_2$, ... , $R_{10}$ make a nontrivial arithmetic sequence and numbers $S_1$, $S_2$, ... , $S_{10}$ also make a nontrivial arithmetic sequence. (A nontrivial arithmetic sequence is an arithmetic sequence with common difference between terms not equal to $0$).
2019 Simurgh
Let $ABC$ be a triangle with $AB=AC$. Let point $Q$ be on plane such that $AQ \parallel BC$ and $AQ = AB$. Now let the $P$ be the foot of perpendicular from $Q$ to $BC$. Show that the circle with diameter $PQ$ is tangent to the circumcircle of triangle $ABC$.
We call a graph symmetric, if we can put its vertices on the plane such that if the edges are segments, the graph has a reflectional symmetry with respect to a line not passing through its vertices. Find the least value of $K$ such that the edges of every graph with $100$ vertices, can be divided into $K$ symmetric subgraphs.
Assume that every root of polynomial $P(x) = x^d - a_1x^{d-1} + ... + (-1)^{d-k}a_d$ is in $[0,1]$. Show that for every $k = 1,2,...,d$ the following inequality holds: $ a_k - a_{k+1} + ... + (-1)^{d-k}a_d \geq 0 $