2018 Greece Team Selection Test

1

If $x, y, z$ are positive real numbers such that $x + y + z = 9xyz.$ Prove that: $$\frac {x} {\sqrt {x^2+2yz+2}}+\frac {y} {\sqrt {y^2+2zx+2}}+\frac {z} {\sqrt {z^2+2xy+2}}\ge 1.$$ Consider when equality applies.

2

A triangle $ABC$ is inscribed in a circle $(C)$ .Let $G$ the centroid of $\triangle ABC$ . We draw the altitudes $AD,BE,CF$ of the given triangle .Rays $AG$ and $GD$ meet (C) at $M$ and $N$.Prove that points $ F,E,M,N $ are concyclic.

3

Find all functions $f:\mathbb{Z}_{>0}\mapsto\mathbb{Z}_{>0}$ such that $$xf(x)+(f(y))^2+2xf(y)$$is perfect square for all positive integers $x,y$. **This problem was proposed by me for the BMO 2017 and it was shortlisted. We then used it in our TST.

4

Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed: $$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$. The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this. Prove that Eduardo has a winning strategy. Proposed by Amine Natik, Morocco