Let $a_1, a_2, ..., a_n$ be more than one real numbers, such that $0\leq a_i\leq \frac{\pi}{2}$. Prove that $$\Bigg(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\sin a_i}\Bigg)\Bigg(1+\prod_{i=1}^{n}(\sin a_i)^{\frac{1}{n}}\Bigg)\leq1.$$
2018 Mediterranean Mathematics OIympiad
Let $ABC$ be acute triangle. Let $E$ and $F$ be points on $BC$, such that angles $BAE$ and $FAC$ are equal. Lines $AE$ and $AF$ intersect cirumcircle of $ABC$ at points $M$ and $N$. On rays $AB$ and $AC$ we have points $P$ and $R$, such that angle $PEA$ is equal to angle $B$ and angle $AER$ is equal to angle $C$. Let $L$ be intersection of $AE$ and $PR$ and $D$ be intersection of $BC$ and $LN$. Prove that $$\frac{1}{|MN|}+\frac{1}{|EF|}=\frac{1}{|ED|}.$$
An integer $a\ge1$ is called Aegean, if none of the numbers $a^{n+2}+3a^n+1$ with $n\ge1$ is prime. Prove that there are at least 500 Aegean integers in the set $\{1,2,\ldots,2018\}$. (Proposed by Gerhard Woeginger, Austria)
Determine the largest integer $N$, for which there exists a $6\times N$ table $T$ that has the following properties: $*$ Every column contains the numbers $1,2,\ldots,6$ in some ordering. $*$ For any two columns $i\ne j$, there exists a row $r$ such that $T(r,i)= T(r,j)$. $*$ For any two columns $i\ne j$, there exists a row $s$ such that $T(s,i)\ne T(s,j)$. (Proposed by Gerhard Woeginger, Austria)