Consider the two square matrices \[A=\begin{bmatrix} +1 & +1 &+1& +1 &+1 \\+1 &+1 &+1&-1 &-1 \\ +1 &-1&-1 &+1& +1 \\ +1 & -1 & -1 & -1 & +1 \\ +1 &+1&-1 &+1&-1 \end{bmatrix} \quad \text{ and } \quad B=\begin{bmatrix} +1 & +1 &+1& +1 &+1 \\+1 &+1 &+1&-1 &-1 \\ +1 &+1&-1& +1&-1 \\ +1 &-1& -1& +1& +1 \\ +1 & -1& +1&-1 &+1 \end{bmatrix}\] with entries $+1$ and $-1$. The following operations will be called elementary: (1) Changing signs of all numbers in one row; (2) Changing signs of all numbers in one column; (3) Interchanging two rows (two rows exchange their positions); (4) Interchanging two columns. Prove that the matrix $B$ cannot be obtained from the matrix $A$ using these operations.