We say that a polygon $P$ is inscribed in another polygon $Q$ when all vertices of $P$ belong to perimeter of $Q$. We also say in this case that $Q$ is circumscribed to $P$. Given a triangle $T$, let $l$ be the maximum value of the side of a square inscribed in $T$ and $L$ be the minimum value of the side of a square circumscribed to $T$. Prove that for every triangle $T$ the inequality $L/l \ge 2$ holds and find all the triangles $T$ for which the equality occurs.
2018 Brazil National Olympiad
Tuesday, November 13 - Day 1
Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations. a) Show that if the initial number written is $0$, then Azambuja cannot reach his goal. b) Find all initial numbers for which Azambuja can achieve his goal.
Let $k$, $n$ be fixed positive integers. In a circular table, there are placed pins numbered successively with the numbers $1, 2 \dots, n$, with $1$ and $n$ neighbors. It is known that pin $1$ is golden and the others are white. Arnaldo and Bernaldo play a game, in which a ring is placed initially on one of the pins and at each step it changes position. The game begins with Bernaldo choosing a starting pin for the ring, and the first step consists of the following: Arnaldo chooses a positive integer $d$ any and Bernaldo moves the ring $d$ pins clockwise or counterclockwise (positions are considered modulo $n$, i.e., pins $x$, $y$ equal if and only if $n$ divides $x-y$). After that, the ring changes its position according to one of the following rules, to be chosen at every step by Arnaldo: Rule 1: Arnaldo chooses a positive integer $d$ and Bernaldo moves the ring $d$ pins clockwise or counterclockwise. Rule 2: Arnaldo chooses a direction (clockwise or counterclockwise), and Bernaldo moves the ring in the chosen direction in $d$ or $kd$ pins, where $d$ is the size of the last displacement performed. Arnaldo wins if, after a finite number of steps, the ring is moved to the golden pin. Determine, as a function of $k$, the values of $n$ for which Arnaldo has a strategy that guarantees his victory, no matter how Bernaldo plays.
Wednesday, November 14 - Day 2
Esmeralda writes $2n$ real numbers $x_1, x_2, \dots , x_{2n}$, all belonging to the interval $[0, 1]$, around a circle and multiplies all the pairs of numbers neighboring to each other, obtaining, in the counterclockwise direction, the products $p_1 = x_1x_2$, $p_2 = x_2x_3$, $\dots$ , $p_{2n} = x_{2n}x_1$. She adds the products with even indices and subtracts the products with odd indices. What is the maximum possible number Esmeralda can get?
Consider the sequence in which $a_1 = 1$ and $a_n$ is obtained by juxtaposing the decimal representation of $n$ at the end of the decimal representation of $a_{n-1}$. That is, $a_1 = 1$, $a_2 = 12$, $a_3 = 123$, $\dots$ , $a_9 = 123456789$, $a_{10} = 12345678910$ and so on. Prove that infinitely many numbers of this sequence are multiples of $7$.
Consider $4n$ points in the plane, with no three points collinear. Using these points as vertices, we form $\binom{4n}{3}$ triangles. Show that there exists a point $X$ of the plane that belongs to the interior of at least $2n^3$ of these triangles.
- - Level 2
Every day from day 2, neighboring cubes (cubes with common faces) to red cubes also turn red and are numbered with the day number.
We say that a quadruple $(A,B,C,D)$ is dobarulho when $A,B,C$ are non-zero algorisms and $D$ is a positive integer such that: $1.$ $A \leq 8$ $2.$ $D>1$ $3.$ $D$ divides the six numbers $\overline{ABC}$, $\overline{BCA}$, $\overline{CAB}$, $\overline{(A+1)CB}$, $\overline{CB(A+1)}$, $\overline{B(A+1)C}$. Find all such quadruples.
Let $ABC$ be an acute-angled triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_a$ passes in the points $A$ and $H$ and is tangent to the circumcircle of $ABC$. Define $X_b, X_c$ analogously, let $O_a, O_b, O_c$ the symmetric of $O$ to the sides $BC, AC$ and $AB$, respectively. Prove that the lines $O_aX_a, O_bX_b, O_cX_c$ are concurrents.
a) In a $ XYZ$ triangle, the incircle tangents the $ XY $ and $ XZ $ sides at the $ T $ and $ W $ points, respectively. Prove that: $$ XT = XW = \frac {XY + XZ-YZ} {2} $$Let $ ABC $ be a triangle and $ D $ is the foot of the relative height next to $ A. $ Are $ I $ and $ J $ the incentives from triangle $ ABD $ and $ ACD $, respectively. The circles of $ ABD $ and $ ACD $ tangency $ AD $ at points $ M $ and $ N $, respectively. Let $ P $ be the tangency point of the $ BC $ circle with the $ AB$ side. The center circle $ A $ and radius $ AP $ intersect the height $ D $ at $ K. $ b) Show that the triangles $ IMK $ and $ KNJ $ are congruent c) Show that the $ IDJK $ quad is inscritibed
One writes, initially, the numbers $1,2,3,\dots,10$ in a board. An operation is to delete the numbers $a, b$ and write the number $a+b+\frac{ab}{f(a,b)}$, where $f(a, b)$ is the sum of all numbers in the board excluding $a$ and $b$, one will make this until remain two numbers $x, y$ with $x\geq y$. Find the maximum value of $x$.
Let $S(n)$ be the sum of digits of $n$. Determine all the pairs $(a, b)$ of positive integers, such that the expression $S(an + b) - S(n)$ has a finite number of values, where $n$ is varying in the positive integers.