$a)$ Prove that there exists $5$ nonnegative real numbers with sum equal to $1$, such that no matter how we arrange them on circle, two neighboring numbers exist with product not less than $\frac{1}{9}$ $a)$ Prove that for every $5$ nonnegative real numbers with sum equal to $1$, we can arrange them on circle, such that product of every two neighboring numbers is not greater than $\frac{1}{9}$
2018 Bosnia and Herzegovina EGMO TST
Sarajevo, February 10th
Prove that for every pair of positive integers $(m,n)$, bigger than $2$, there exists positive integer $k$ and numbers $a_0,a_1,...,a_k$, which are bigger than $2$, such that $a_0=m$, $a_1=n$ and for all $i=0,1,...,k-1$ holds $$ a_i+a_{i+1} \mid a_ia_{i+1}+1$$
Let $O$ be a circumcenter of acute triangle $ABC$ and let $O_1$ and $O_2$ be circumcenters of triangles $OAB$ and $OAC$, respectively. Circumcircles of triangles $OAB$ and $OAC$ intersect side $BC$ in points $D$ ($D \neq B$) and $E$ ($E \neq C$), respectively. Perpendicular bisector of side $BC$ intersects side $AC$ in point $F$($F \neq A$). Prove that circumcenter of triangle $ADE$ lies on $AC$ iff $F$ lies on line $O_1O_2$
It is given positive integer $n$. Let $a_1, a_2,..., a_n$ be positive integers with sum $2S$, $S \in \mathbb{N}$. Positive integer $k$ is called separator if you can pick $k$ different indices $i_1, i_2,...,i_k$ from set $\{1,2,...,n\}$ such that $a_{i_1}+a_{i_2}+...+a_{i_k}=S$. Find, in terms of $n$, maximum number of separators