It is given $n$ positive integers. Product of any one of them with sum of remaining numbers increased by $1$ is divisible with sum of all $n$ numbers. Prove that sum of squares of all $n$ numbers is divisible with sum of all $n$ numbers
2013 Bosnia and Herzegovina Junior BMO TST
Pale, June 1st
1
2
Let $a$, $b$ and $c$ be positive real numbers such that $a^2+b^2+c^2=3$. Prove the following inequality: $\frac{a}{3c(a^2-ab+b^2)} + \frac{b}{3a(b^2-bc+c^2)} + \frac{c}{3b(c^2-ca+a^2)} \leq \frac{1}{abc}$
3
Let $M$ and $N$ be touching points of incircle with sides $AB$ and $AC$ of triangle $ABC$, and $P$ intersection point of line $MN$ and angle bisector of $\angle ABC$. Prove that $\angle BPC =90 ^{\circ}$
4
It is given polygon with $2013$ sides $A_{1}A_{2}...A_{2013}$. His vertices are marked with numbers such that sum of numbers marked by any $9$ consecutive vertices is constant and its value is $300$. If we know that $A_{13}$ is marked with $13$ and $A_{20}$ is marked with $20$, determine with which number is marked $A_{2013}$