2015 Bosnia and Herzegovina Junior BMO TST

Visoko, May 30th

1

Solve equation $x(x+1) = y(y+4)$ where $x$, $y$ are positive integers

2

Find all triplets of positive integers $a$, $b$ and $c$ such that $a \geq b \geq c$ and $\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=2$

3

Let $AD$ be an altitude of triangle $ABC$, and let $M$, $N$ and $P$ be midpoints of $AB$, $AD$ and $BC$, respectively. Furthermore let $K$ be a foot of perpendicular from point $D$ to line $AC$, and let $T$ be point on extension of line $KD$ (over point $D$) such that $\mid DT \mid = \mid MN \mid + \mid DK \mid$. If $\mid MP \mid = 2 \cdot \mid KN \mid$, prove that $\mid AT \mid = \mid MC \mid$.

4

Let $n$ be a positive integer and let $a_1$, $a_2$,..., $a_n$ be positive integers from set $\{1, 2,..., n\}$ such that every number from this set occurs exactly once. Is it possible that numbers $a_1$, $a_1 + a_2 ,..., a_1 + a_2 + ... + a_n$ all have different remainders upon division by $n$, if: $a)$ $n=7$ $b)$ $n=8$