2016 Bosnia and Herzegovina Junior BMO TST

Eastern Sarajevo, May 28th

1

Prove that it is not possible that numbers $(n+1)\cdot 2^n$ and $(n+3)\cdot 2^{n+2}$ are perfect squares, where $n$ is positive integer.

2

We color numbers $1,2,3,...,20$ in two colors, blue and yellow, such that both colors are used (not all numbers are colored in one color). Determine number of ways we can color those numbers, such that product of all blue numbers and product of all yellow numbers have greatest common divisor $1$.

3

Let $O$ be a center of circle which passes through vertices of quadrilateral $ABCD$, which has perpendicular diagonals. Prove that sum of distances of point $O$ to sides of quadrilateral $ABCD$ is equal to half of perimeter of $ABCD$.

4

Let $x$, $y$ and $z$ be positive real numbers such that $\sqrt{xy} + \sqrt{yz} + \sqrt{zx} = 3$. Prove that $\sqrt{x^3+x} + \sqrt{y^3+y} + \sqrt{z^3+z} \geq \sqrt{6(x+y+z)}$