Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB+AC=3BC$.
2017 Bosnia Herzegovina Team Selection Test
May 13th - Day 1
Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$. Proposed by Dorlir Ahmeti, Albania
Find all real constants c for which there exist strictly increasing sequence $a$ of positive integers such that $(a_{2n-1}+a_{2n})/{a_n}=c$ for all positive intŠµgers n.
May 14th - Day 2
There are $ 6n + 4$ mathematicians participating in a conference which includes $ 2n + 1$ meetings. Each meeting has one round table that suits for $ 4$ people and $ n$ round tables that each table suits for $ 6$ people. We have known that two arbitrary people sit next to or have opposite places doesn't exceed one time. 1. Determine whether or not there is the case $ n = 1$. 2. Determine whether or not there is the case $ n > 1$.
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that \[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]
Given is an acute triangle $ABC$. $M$ is an arbitrary point at the side $AB$ and $N$ is midpoint of $AC$. The foots of the perpendiculars from $A$ to $MC$ and $MN$ are points $P$ and $Q$. Prove that center of the circumcircle of triangle $PQN$ lies on the fixed line for all points $M$ from the side $AB$.